Last updated: July 22, 2025
Reload lag data quality checks, SQL examples
A table-level check that calculates the maximum difference in days between ingestion timestamp and event timestamp values on any row. This check should be executed only as a partitioned check because this check finds the longest delay between the time that the row was created in the data source and the timestamp when the row was loaded into its daily or monthly partition. This check detects that a daily or monthly partition was reloaded, setting also the most recent timestamps in the created_at, loaded_at, inserted_at or other similar columns filled by the data pipeline or an ETL process during data loading.
The reload lag data quality check has the following variants for each type of data quality checks supported by DQOps.
daily partition reload lag
Check description
Daily partitioned check calculating the longest time a row waited to be loaded, it is the maximum difference in days between the ingestion timestamp and the event timestamp column on any row in the monitored partition
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_partition_reload_lag |
Reload lag (Maximum delay to load the last record for each partition) | timeliness | partitioned | daily | Timeliness | partition_reload_lag | max_days |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily partition reload lag data quality check.
Managing daily partition reload lag check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_partition_reload_lag --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_partition_reload_lag --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_partition_reload_lag --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_partition_reload_lag --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_partition_reload_lag check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the daily_partition_reload_lag check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
partitioned_checks:
daily:
timeliness:
daily_partition_reload_lag:
warning:
max_days: 1.0
error:
max_days: 2.0
fatal:
max_days: 1.0
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the partition_reload_lag data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMP_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
DAY
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATETIME_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMP_DIFF(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMP_DIFF(
SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP),
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATE_DIFF(
'MILLISECOND',
analyzed_table."col_event_timestamp",
analyzed_table."col_inserted_at"
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(DAYS_BETWEEN(
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE),
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)
))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- else -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(SECONDS_BETWEEN(
analyzed_table."col_inserted_at",
analyzed_table."col_event_timestamp"
)) / 24.0 / 3600.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DAYS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- else -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(CAST(analyzed_table."col_inserted_at" AS DATE) - (CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATEDIFF(SECOND,
analyzed_table.[col_event_timestamp],
analyzed_table.[col_inserted_at]
)
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(DAY FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
partitioned_checks:
daily:
timeliness:
daily_partition_reload_lag:
warning:
max_days: 1.0
error:
max_days: 2.0
fatal:
max_days: 1.0
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the partition_reload_lag sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMP_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
DAY
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATETIME_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMP_DIFF(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMP_DIFF(
SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP),
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATE_DIFF(
'MILLISECOND',
analyzed_table."col_event_timestamp",
analyzed_table."col_inserted_at"
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(DAYS_BETWEEN(
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE),
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)
))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- else -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(SECONDS_BETWEEN(
analyzed_table."col_inserted_at",
analyzed_table."col_event_timestamp"
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DAYS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- else -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(CAST(analyzed_table."col_inserted_at" AS DATE) - (CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATEDIFF(SECOND,
analyzed_table.[col_event_timestamp],
analyzed_table.[col_inserted_at]
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY level_1, level_2CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(DAY FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
monthly partition reload lag
Check description
Monthly partitioned check calculating the longest time a row waited to be loaded, it is the maximum difference in days between the ingestion timestamp and the event timestamp column on any row in the monitored partition
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
monthly_partition_reload_lag |
Reload lag (Maximum delay to load the last record for each partition) | timeliness | partitioned | monthly | Timeliness | partition_reload_lag | max_days |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the monthly partition reload lag data quality check.
Managing monthly partition reload lag check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_partition_reload_lag --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_partition_reload_lag --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_partition_reload_lag --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_partition_reload_lag --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_partition_reload_lag check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the monthly_partition_reload_lag check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
partitioned_checks:
monthly:
timeliness:
monthly_partition_reload_lag:
warning:
max_days: 1.0
error:
max_days: 2.0
fatal:
max_days: 1.0
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the partition_reload_lag data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMP_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
DAY
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATETIME_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMP_DIFF(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMP_DIFF(
SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP),
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATE_DIFF(
'MILLISECOND',
analyzed_table."col_event_timestamp",
analyzed_table."col_inserted_at"
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(DAYS_BETWEEN(
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE),
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)
))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- else -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(SECONDS_BETWEEN(
analyzed_table."col_inserted_at",
analyzed_table."col_event_timestamp"
)) / 24.0 / 3600.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DAYS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- else -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(CAST(analyzed_table."col_inserted_at" AS DATE) - (CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATEDIFF(SECOND,
analyzed_table.[col_event_timestamp],
analyzed_table.[col_inserted_at]
)
) / 24.0 / 3600.0 AS actual_value,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(DAY FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
partitioned_checks:
monthly:
timeliness:
monthly_partition_reload_lag:
warning:
max_days: 1.0
error:
max_days: 2.0
fatal:
max_days: 1.0
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the partition_reload_lag sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMP_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
DAY
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATETIME_DIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMP_DIFF(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMP_DIFF(
SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP),
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
MILLISECOND
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATE_DIFF(
'MILLISECOND',
analyzed_table."col_event_timestamp",
analyzed_table."col_inserted_at"
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(DAYS_BETWEEN(
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE),
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)
))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- else -%}
MAX(SECONDS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(SECONDS_BETWEEN(
analyzed_table."col_inserted_at",
analyzed_table."col_event_timestamp"
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DAYS_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
NANO100_BETWEEN(
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
NANO100_BETWEEN(
TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
SECOND,
CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
SECOND,
CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- else -%}
MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE) - (CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(CAST(analyzed_table."col_inserted_at" AS DATE) - (CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(EPOCH FROM (
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} - {{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(EPOCH FROM (
({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP - ({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(EPOCH FROM (
(analyzed_table."col_inserted_at")::TIMESTAMP - (analyzed_table."col_event_timestamp")::TIMESTAMP
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
TIMESTAMPDIFF(
MILLISECOND,
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp"),
TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
BIGINT({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
-
BIGINT({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- else -%}
MAX(
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
-
BIGINT(SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
BIGINT(SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP))
-
BIGINT(SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
DAY,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- else -%}
MAX(
DATEDIFF(SECOND,
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
DATEDIFF(SECOND,
analyzed_table.[col_event_timestamp],
analyzed_table.[col_inserted_at]
)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY level_1, level_2DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
DATEDIFF(
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}
)
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
MAX(
EXTRACT(DAY FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP) - CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
MAX(
EXTRACT(DAY FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CAST(analyzed_table."col_inserted_at" AS TIMESTAMP) - CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_ingestion_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'DAY',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
{{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }},
{{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_ingestion_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(MAX(
DATE_DIFF(
'MILLISECOND',
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP),
TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
)
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
What's next
- Learn how to configure data quality checks in DQOps
- Look at the examples of running data quality checks, targeting tables and columns