Skip to content

data ingestion delay

data ingestion delay checks

Description
Table level check that calculates time difference between the most recent row in the table and the most recent timestamp when the last row was loaded into the data warehouse / data lake. The most recent row is identified by finding the most recent (maximum) value of the timestamp column that should contain the last modification timestamp from the source. The timestamp when the row was loaded is identified by the most recent (maximum) value a timestamp column that was filled by the data pipeline, for example: "loaded_at", "updated_at", etc. This check requires that the data pipeline is filling an extra column with the timestamp when the data loading job has been executed. The names of both columns used for comparison should be specified in the "timestamp_columns" configuration entry on the table.


profile data ingestion delay

Check description
Calculates the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Check name Check type Time scale Sensor definition Quality rule
profile_data_ingestion_delay profiling data_ingestion_delay max_days

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=profile_data_ingestion_delay
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=profile_data_ingestion_delay
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=profile_data_ingestion_delay
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=profile_data_ingestion_delay
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_data_ingestion_delay
Check structure (Yaml)
  profiling_checks:
    timeliness:
      profile_data_ingestion_delay:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  profiling_checks:
    timeliness:
      profile_data_ingestion_delay:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  profiling_checks:
    timeliness:
      profile_data_ingestion_delay:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

daily data ingestion delay

Check description
Daily calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Check name Check type Time scale Sensor definition Quality rule
daily_data_ingestion_delay recurring daily data_ingestion_delay max_days

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=daily_data_ingestion_delay
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=daily_data_ingestion_delay
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=daily_data_ingestion_delay
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_data_ingestion_delay
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_data_ingestion_delay
Check structure (Yaml)
  recurring_checks:
    daily:
      timeliness:
        daily_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  recurring_checks:
    daily:
      timeliness:
        daily_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
    TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
    TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
    CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  recurring_checks:
    daily:
      timeliness:
        daily_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
    TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
    TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
    CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

monthly data ingestion delay

Check description
Monthly recurring calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Check name Check type Time scale Sensor definition Quality rule
monthly_data_ingestion_delay recurring monthly data_ingestion_delay max_days

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=monthly_data_ingestion_delay
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=monthly_data_ingestion_delay
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=monthly_data_ingestion_delay
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=monthly_data_ingestion_delay
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_data_ingestion_delay
Check structure (Yaml)
  recurring_checks:
    monthly:
      timeliness:
        monthly_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  recurring_checks:
    monthly:
      timeliness:
        monthly_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  recurring_checks:
    monthly:
      timeliness:
        monthly_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

daily partition data ingestion delay

Check description
Daily partitioned check calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Check name Check type Time scale Sensor definition Quality rule
daily_partition_data_ingestion_delay partitioned daily data_ingestion_delay max_days

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=daily_partition_data_ingestion_delay
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=daily_partition_data_ingestion_delay
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=daily_partition_data_ingestion_delay
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_partition_data_ingestion_delay
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_partition_data_ingestion_delay
Check structure (Yaml)
  partitioned_checks:
    daily:
      timeliness:
        daily_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  partitioned_checks:
    daily:
      timeliness:
        daily_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(analyzed_table.`` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."" AS date) AS time_period,
    CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."" AS date) AS time_period,
    CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(analyzed_table."" AS date) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table.[] AS date) AS time_period,
    CAST((CAST(analyzed_table.[] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[] AS date), CAST(analyzed_table.[] AS date)
ORDER BY CAST(analyzed_table.[] AS date)

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  partitioned_checks:
    daily:
      timeliness:
        daily_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM