Skip to content

Last updated: July 22, 2025

Data staleness data quality checks, SQL examples

A table-level check that calculates the time difference between the last timestamp when any data was loaded into a table and the current time. This check can only be use when a data pipeline, ETL process, or trigger in the data warehouse is filling an extra column with the timestamp when the data loading job was loaded. The ingestion column used for comparison is defined as the timestamp_columns.ingestion_timestamp_column on the table configuration. This check is also known as "Data Staleness".


The data staleness data quality check has the following variants for each type of data quality checks supported by DQOps.

profile data staleness

Check description

Calculates the time difference in days between the current date and the most recent data ingestion timestamp (staleness)

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_data_staleness Data staleness (Maximum number of days since the recent ingestion) timeliness profiling Timeliness data_staleness max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile data staleness data quality check.

Managing profile data staleness check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_data_staleness --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_staleness --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_staleness --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_data_staleness --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_staleness --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_staleness --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_data_staleness check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=profile_data_staleness

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_data_staleness

You can also run this check on all tables on which the profile_data_staleness check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_staleness

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  profiling_checks:
    timeliness:
      profile_data_staleness:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  profiling_checks:
    timeliness:
      profile_data_staleness:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

daily data staleness

Check description

Daily calculating the time difference in days between the current date and the most recent data ingestion timestamp (staleness)

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_data_staleness Data staleness (Maximum number of days since the recent ingestion) timeliness monitoring daily Timeliness data_staleness max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily data staleness data quality check.

Managing daily data staleness check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_data_staleness --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_staleness --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_staleness --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_data_staleness --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_staleness --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_staleness --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_data_staleness check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_data_staleness

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_data_staleness

You can also run this check on all tables on which the daily_data_staleness check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_staleness

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  monitoring_checks:
    daily:
      timeliness:
        daily_data_staleness:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    daily:
      timeliness:
        daily_data_staleness:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

monthly data staleness

Check description

Monthly monitoring calculating the time difference in days between the current date and the most recent data ingestion timestamp (staleness)

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_data_staleness Data staleness (Maximum number of days since the recent ingestion) timeliness monitoring monthly Timeliness data_staleness max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly data staleness data quality check.

Managing monthly data staleness check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_data_staleness --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_staleness --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_staleness --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_data_staleness --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_staleness --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_staleness --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_data_staleness check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_data_staleness

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_data_staleness

You can also run this check on all tables on which the monthly_data_staleness check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_staleness

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  monitoring_checks:
    monthly:
      timeliness:
        monthly_data_staleness:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    monthly:
      timeliness:
        monthly_data_staleness:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_staleness sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        CURRENT_DATETIME(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        CURRENT_TIMESTAMP(),
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        toDate(now())
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        toDateTime(now()),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}, 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at", 3)
        ),
        toDateTime64(now(), 3)
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(CURRENT_DATE, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(CURRENT_TIMESTAMP, MAX(analyzed_table."col_inserted_at")) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at"))::TIMESTAMP WITH TIME ZONE
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE()
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)),
        CURRENT_TIMESTAMP()
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
         (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
     (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- else -%}
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS DATE))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_inserted_at") AS DATE)) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        TODAY() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        NOW() - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        NOW() - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        CURRENT_TIMESTAMP - MAX((analyzed_table."col_inserted_at")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(
            TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at")
        ),
        CURRENT_TIMESTAMP
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE(),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(CURRENT_DATETIME())
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(CURRENT_TIMESTAMP())
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(DAY,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            GETDATE()
        ) / 24.0 / 3600.0
    {%- else -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
            MAX(analyzed_table.[col_inserted_at]),
            SYSDATETIMEOFFSET()
        ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        CURRENT_DATE,
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_current_ingestion_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_DATE
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_current_ingestion_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        ),
        CURRENT_TIMESTAMP
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

What's next