Skip to content

Last updated: July 22, 2025

Data ingestion delay data quality checks, SQL examples

A table-level check that calculates the time difference between the most recent row in the table and the most recent timestamp when the last row was loaded into the data warehouse or data lake. To identify the most recent row, the check finds the maximum value of the timestamp column that should contain the last modification timestamp from the source. The timestamp when the row was loaded is identified by the most recent (maximum) value a timestamp column that was filled by the data pipeline, for example: "loaded_at", "updated_at", etc. This check requires that the data pipeline is filling an extra column with the timestamp when the data loading job has been executed. The names of both columns used for comparison should be specified in the "timestamp_columns" configuration entry on the table.


The data ingestion delay data quality check has the following variants for each type of data quality checks supported by DQOps.

profile data ingestion delay

Check description

Calculates the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_data_ingestion_delay Data ingestion delay (Maximum number of days between the last record has been created and loaded) timeliness profiling Timeliness data_ingestion_delay max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile data ingestion delay data quality check.

Managing profile data ingestion delay check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_data_ingestion_delay --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_ingestion_delay --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_ingestion_delay --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_data_ingestion_delay --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_ingestion_delay --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_ingestion_delay --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_data_ingestion_delay check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=profile_data_ingestion_delay

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_data_ingestion_delay

You can also run this check on all tables on which the profile_data_ingestion_delay check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_data_ingestion_delay

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  profiling_checks:
    timeliness:
      profile_data_ingestion_delay:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  profiling_checks:
    timeliness:
      profile_data_ingestion_delay:
        warning:
          max_days: 1.0
        error:
          max_days: 2.0
        fatal:
          max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

daily data ingestion delay

Check description

Daily calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_data_ingestion_delay Data ingestion delay (Maximum number of days between the last record has been created and loaded) timeliness monitoring daily Timeliness data_ingestion_delay max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily data ingestion delay data quality check.

Managing daily data ingestion delay check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_data_ingestion_delay --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_ingestion_delay --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_ingestion_delay --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_data_ingestion_delay --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_ingestion_delay --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_ingestion_delay --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_data_ingestion_delay check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_data_ingestion_delay

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_data_ingestion_delay

You can also run this check on all tables on which the daily_data_ingestion_delay check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_data_ingestion_delay

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  monitoring_checks:
    daily:
      timeliness:
        daily_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    daily:
      timeliness:
        daily_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

monthly data ingestion delay

Check description

Monthly monitoring calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_data_ingestion_delay Data ingestion delay (Maximum number of days between the last record has been created and loaded) timeliness monitoring monthly Timeliness data_ingestion_delay max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly data ingestion delay data quality check.

Managing monthly data ingestion delay check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_data_ingestion_delay --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_ingestion_delay --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_ingestion_delay --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_data_ingestion_delay --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_ingestion_delay --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_ingestion_delay --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_data_ingestion_delay check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_data_ingestion_delay

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_data_ingestion_delay

You can also run this check on all tables on which the monthly_data_ingestion_delay check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_data_ingestion_delay

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  monitoring_checks:
    monthly:
      timeliness:
        monthly_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
    SELECT
        original_table.*
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    monthly:
      timeliness:
        monthly_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2

FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

daily partition data ingestion delay

Check description

Daily partitioned check calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_partition_data_ingestion_delay Data ingestion delay (Maximum number of days between the last record has been created and loaded) timeliness partitioned daily Timeliness data_ingestion_delay max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily partition data ingestion delay data quality check.

Managing daily partition data ingestion delay check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_partition_data_ingestion_delay --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_data_ingestion_delay --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_data_ingestion_delay --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_partition_data_ingestion_delay --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_data_ingestion_delay --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_data_ingestion_delay --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_partition_data_ingestion_delay check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_partition_data_ingestion_delay

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_partition_data_ingestion_delay

You can also run this check on all tables on which the daily_partition_data_ingestion_delay check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_data_ingestion_delay

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  partitioned_checks:
    daily:
      timeliness:
        daily_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    CAST(original_table."date_column" AS DATE) AS time_period,
    TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    CAST(original_table."date_column" AS DATE) AS time_period,
    TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
    CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    CAST(original_table."date_column" AS date) AS time_period,
    CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table.[date_column] AS date) AS time_period,
    CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    CAST(original_table."date_column" AS date) AS time_period,
    CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  partitioned_checks:
    daily:
      timeliness:
        daily_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(original_table."date_column" AS DATE) AS time_period,
    TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(original_table."date_column" AS DATE) AS time_period,
    TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
    CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(original_table."date_column" AS date) AS time_period,
    CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    CAST(analyzed_table.[date_column] AS date) AS time_period,
    CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY level_1, level_2CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(original_table."date_column" AS date) AS time_period,
    CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

monthly partition data ingestion delay

Check description

Monthly partitioned check calculating the time difference in days between the most recent event timestamp and the most recent ingestion timestamp

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_partition_data_ingestion_delay Data ingestion delay (Maximum number of days between the last record has been created and loaded) timeliness partitioned monthly Timeliness data_ingestion_delay max_days

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly partition data ingestion delay data quality check.

Managing monthly partition data ingestion delay check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_partition_data_ingestion_delay --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_data_ingestion_delay --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_data_ingestion_delay --enable-warning
                    -Wmax_days=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_partition_data_ingestion_delay --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_data_ingestion_delay --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_data_ingestion_delay --enable-error
                    -Emax_days=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_partition_data_ingestion_delay check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_partition_data_ingestion_delay

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_partition_data_ingestion_delay

You can also run this check on all tables on which the monthly_partition_data_ingestion_delay check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_data_ingestion_delay

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  partitioned_checks:
    monthly:
      timeliness:
        monthly_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
    TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
    CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  partitioned_checks:
    monthly:
      timeliness:
        monthly_partition_data_ingestion_delay:
          warning:
            max_days: 1.0
          error:
            max_days: 2.0
          fatal:
            max_days: 1.0
  columns:
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_ingestion_delay sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMP_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        DAY
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATETIME_DIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMP_DIFF(
        MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ),
        MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ),
        MILLISECOND
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'DAY'
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
        ),
        MAX(
            toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATE_DIFF(
        'MILLISECOND',
        MAX(
            toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
        ),
        MAX(
            toDateTime64OrNull(analyzed_table."col_inserted_at"), 3)
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DAYS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
        ) / 24.0 / 3600.0
    {%- else -%}
        SECONDS_BETWEEN(
            MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)),
            MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)))
        ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    SECONDS_BETWEEN(
            MAX(CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)),
            MAX((CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)))
        ) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DAYS_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    NANO100_BETWEEN(
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0 / 10000
    {%- else -%}
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
        ),
        MAX(
            TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        )
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    NANO100_BETWEEN(
        MAX(
            TO_TIMESTAMP(analyzed_table."col_event_timestamp")
        ),
        MAX(
            TO_TIMESTAMP(analyzed_table."col_inserted_at")
        )
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
    TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    TIMESTAMPDIFF(
        SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        SECOND,
        MAX(analyzed_table.`col_event_timestamp` AS TIMESTAMP),
        MAX(analyzed_table.`col_inserted_at` AS TIMESTAMP)
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
         MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))

    {%- else -%}
     MAX(CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS DATE)) - MAX((CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS DATE)))
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    MAX(CAST(analyzed_table."col_inserted_at" AS DATE)) - MAX((CAST(analyzed_table."col_event_timestamp" AS DATE))) AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    EXTRACT(EPOCH FROM (
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )) / 24.0 / 3600.0
    {%- else -%}
    EXTRACT(EPOCH FROM (
        MAX(({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})::TIMESTAMP) - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
    )) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    EXTRACT(EPOCH FROM (
        MAX((analyzed_table."col_inserted_at")::TIMESTAMP) - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
    )) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true' and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})),
        MAX(TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    TIMESTAMPDIFF(
        MILLISECOND,
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")),
        MAX(TRY_TO_TIMESTAMP(analyzed_table."col_inserted_at"))
    ) / 24.0 / 3600.0 / 1000.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}))
        -
        BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_inserted_at` AS TIMESTAMP)
        ))
        -
        BIGINT(MAX(
            SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
        ))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
        DATEDIFF(SECOND,
            MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
            MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
        ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(DAY,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- else -%}
    DATEDIFF(SECOND,
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    DATEDIFF(SECOND,
        MAX(analyzed_table.[col_event_timestamp]),
        MAX(analyzed_table.[col_inserted_at])
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
    CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY level_1, level_2DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    DATEDIFF(
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
    )
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- else -%}
    (
        EXTRACT(DAY FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)
            - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    (
        EXTRACT(DAY FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
        + EXTRACT(HOUR FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
        + EXTRACT(MINUTE FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
        + EXTRACT(SECOND FROM ((CAST(MAX(analyzed_table."col_inserted_at") AS TIMESTAMP)
            - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
    ) / 24.0 / 3600.0 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}

{% macro render_ingestion_event_max_diff() -%}
    {%- if lib.is_instant(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- elif lib.is_local_date(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'DAY',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE)
    {%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.ingestion_timestamp_column].type_snapshot.column_type) == 'true'
    and lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
        MAX({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }})
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- else -%}
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST({{ lib.render_column(table.timestamp_columns.ingestion_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
    {%- endif -%}
{%- endmacro -%}

SELECT
    {{ render_ingestion_event_max_diff() }} AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CAST(DATE_DIFF(
        'MILLISECOND',
        MAX(
            TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
        ),
        MAX(
            TRY_CAST(analyzed_table."col_inserted_at" AS TIMESTAMP)
        )
    ) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

What's next