Last updated: July 22, 2025
Data freshness anomaly data quality checks, SQL examples
This check calculates the most recent rows value and the current time and detects anomalies in a time series of previous averages. The timestamp column that is used for comparison is defined as the timestamp_columns.event_timestamp_column on the table configuration. It raises a data quality issue when the mean is in the top anomaly_percent percentage of the most outstanding values in the time series. This data quality check uses a 90-day time window and requires a history of at least 30 days.
The data freshness anomaly data quality check has the following variants for each type of data quality checks supported by DQOps.
profile data freshness anomaly
Check description
Verifies that the number of days since the most recent event timestamp (freshness) changes in a rate within a percentile boundary during the last 90 days.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
profile_data_freshness_anomaly |
Data freshness anomaly (Abnormal delay in data delivery) | timeliness | profiling | Timeliness | data_freshness | anomaly_timeliness_delay |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the profile data freshness anomaly data quality check.
Managing profile data freshness anomaly check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=profile_data_freshness_anomaly --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=profile_data_freshness_anomaly --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=profile_data_freshness_anomaly --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=profile_data_freshness_anomaly --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_data_freshness_anomaly check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the profile_data_freshness_anomaly check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
profiling_checks:
timeliness:
profile_data_freshness_anomaly:
warning:
anomaly_percent: 1.0
error:
anomaly_percent: 0.5
fatal:
anomaly_percent: 0.1
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_freshness data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
DAY
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATETIME_DIFF(
CURRENT_DATETIME(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDate(now())
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime(now())
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(CURRENT_DATE - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- else -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::DATE
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- else -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TODAY() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
NOW() - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
) / 24.0 / 3600.0
{%- else -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
profiling_checks:
timeliness:
profile_data_freshness_anomaly:
warning:
anomaly_percent: 1.0
error:
anomaly_percent: 0.5
fatal:
anomaly_percent: 0.1
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_freshness sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
DAY
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATETIME_DIFF(
CURRENT_DATETIME(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDate(now())
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime(now())
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(CURRENT_DATE - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- else -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::DATE
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP(analyzed_table."col_event_timestamp")
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX(analyzed_table.`col_event_timestamp`)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX(analyzed_table.`col_event_timestamp`)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- else -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_event_timestamp") AS DATE)) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TODAY() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
NOW() - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
NOW() - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
) / 24.0 / 3600.0
{%- else -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
DATEDIFF(SECOND,
MAX(analyzed_table.[col_event_timestamp]),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
daily data freshness anomaly
Check description
Verifies that the number of days since the most recent event timestamp (freshness) changes in a rate within a percentile boundary during the last 90 days.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_data_freshness_anomaly |
Data freshness anomaly (Abnormal delay in data delivery) | timeliness | monitoring | daily | Timeliness | data_freshness | anomaly_timeliness_delay |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily data freshness anomaly data quality check.
Managing daily data freshness anomaly check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_data_freshness_anomaly --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_data_freshness_anomaly --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_data_freshness_anomaly --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_data_freshness_anomaly --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_data_freshness_anomaly check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the daily_data_freshness_anomaly check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
monitoring_checks:
daily:
timeliness:
daily_data_freshness_anomaly:
warning:
anomaly_percent: 1.0
error:
anomaly_percent: 0.5
fatal:
anomaly_percent: 0.1
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_freshness data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
DAY
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATETIME_DIFF(
CURRENT_DATETIME(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDate(now())
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime(now())
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(CURRENT_DATE - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- else -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::DATE
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- else -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TODAY() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
NOW() - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
) / 24.0 / 3600.0
{%- else -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
monitoring_checks:
daily:
timeliness:
daily_data_freshness_anomaly:
warning:
anomaly_percent: 1.0
error:
anomaly_percent: 0.5
fatal:
anomaly_percent: 0.1
columns:
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the data_freshness sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
DAY
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATETIME_DIFF(
CURRENT_DATETIME(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMP_DIFF(
CURRENT_TIMESTAMP(),
MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
),
MILLISECOND
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDate(now())
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
toDateTime(now())
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}, 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
DATE_DIFF(
'MILLISECOND',
MAX(
toDateTime64OrNull(analyzed_table."col_event_timestamp", 3)
),
toDateTime64(now(), 3)
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(CURRENT_DATE - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- else -%}
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SECONDS_BETWEEN(CURRENT_TIMESTAMP, CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::DATE
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP WITH TIME ZONE
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DAYS_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
NANO100_BETWEEN(
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- else -%}
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
NANO100_BETWEEN(
MAX(
TO_TIMESTAMP(analyzed_table."col_event_timestamp")
),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 / 10000 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX(analyzed_table.`col_event_timestamp`)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP()
) / 24.0 / 3600.0
{%- else -%}
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
SECOND,
CURRENT_TIMESTAMP(),
MAX(analyzed_table.`col_event_timestamp`)
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- else -%}
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS DATE))
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(CAST(CURRENT_TIMESTAMP AS DATE) - CAST(MAX(analyzed_table."col_event_timestamp") AS DATE)) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TODAY() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
NOW() - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
NOW() - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
NOW() - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CURRENT_DATE - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)) / 24.0 / 3600.0
{%- else -%}
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX(({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})::TIMESTAMP)
)) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
EXTRACT(EPOCH FROM (
CURRENT_TIMESTAMP - MAX((analyzed_table."col_event_timestamp")::TIMESTAMP)
)) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- else -%}
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
TIMESTAMPDIFF(
MILLISECOND,
MAX(
TRY_TO_TIMESTAMP(analyzed_table."col_event_timestamp")
)
CURRENT_TIMESTAMP
) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE(),
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
BIGINT(CURRENT_DATETIME())
-
BIGINT(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}))
) / 24.0 / 3600.0
{%- else -%}
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
BIGINT(CURRENT_TIMESTAMP())
-
BIGINT(MAX(
SAFE_CAST(analyzed_table.`col_event_timestamp` AS TIMESTAMP)
))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(DAY,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
GETDATE()
) / 24.0 / 3600.0
{%- else -%}
DATEDIFF(SECOND,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
DATEDIFF(SECOND,
MAX(analyzed_table.[col_event_timestamp]),
SYSDATETIMEOFFSET()
) / 24.0 / 3600.0 AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
DATEDIFF(
CURRENT_DATE,
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }})
)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- else -%}
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}) AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
(
EXTRACT(DAY FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 86400
+ EXTRACT(HOUR FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 3600
+ EXTRACT(MINUTE FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND)) * 60
+ EXTRACT(SECOND FROM ((CURRENT_TIMESTAMP - CAST(MAX(analyzed_table."col_event_timestamp") AS TIMESTAMP)) DAY(4) TO SECOND))
) / 24.0 / 3600.0 AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro render_current_event_diff() -%}
{%- if lib.is_instant(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- elif lib.is_local_date(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'DAY',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_DATE
) AS DOUBLE)
{%- elif lib.is_local_date_time(table.columns[table.timestamp_columns.event_timestamp_column].type_snapshot.column_type) == 'true' -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }}),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- else -%}
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST({{ lib.render_column(table.timestamp_columns.event_timestamp_column, 'analyzed_table') }} AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0
{%- endif -%}
{%- endmacro -%}
SELECT
{{ render_current_event_diff() }} AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CAST(DATE_DIFF(
'MILLISECOND',
MAX(
TRY_CAST(analyzed_table."col_event_timestamp" AS TIMESTAMP)
),
CURRENT_TIMESTAMP
) AS DOUBLE) / 24.0 / 3600.0 / 1000.0 AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
What's next
- Learn how to configure data quality checks in DQOps
- Look at the examples of running data quality checks, targeting tables and columns