Last updated: July 22, 2025
Text match date format percent data quality checks, SQL examples
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found.
The text match date format percent data quality check has the following variants for each type of data quality checks supported by DQOps.
profile text match date format percent
Check description
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
profile_text_match_date_format_percent |
Minimum percentage of rows containing text values that match a date format | datetime | profiling | Validity | text_match_date_format_percent | min_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the profile text match date format percent data quality check.
Managing profile text match date format percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_text_match_date_format_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_text_match_date_format_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_text_match_date_format_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_text_match_date_format_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_text_match_date_format_percent check on all tables and columns on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_text_match_date_format_percent
You can also run this check on all tables (and columns) on which the profile_text_match_date_format_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
columns:
target_column:
profiling_checks:
datetime:
profile_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value
FROM(
SELECT
original_table.*
FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
profiling_checks:
datetime:
profile_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
daily text match date format percent
Check description
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found. Creates a separate data quality check (and an alert) for each daily monitoring.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_text_match_date_format_percent |
Minimum percentage of rows containing text values that match a date format | datetime | monitoring | daily | Validity | text_match_date_format_percent | min_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily text match date format percent data quality check.
Managing daily text match date format percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_text_match_date_format_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_text_match_date_format_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_text_match_date_format_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_text_match_date_format_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_text_match_date_format_percent check on all tables and columns on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_text_match_date_format_percent
You can also run this check on all tables (and columns) on which the daily_text_match_date_format_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
columns:
target_column:
monitoring_checks:
daily:
datetime:
daily_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value
FROM(
SELECT
original_table.*
FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
monitoring_checks:
daily:
datetime:
daily_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
monthly text match date format percent
Check description
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found. Creates a separate data quality check (and an alert) for each monthly monitoring.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
monthly_text_match_date_format_percent |
Minimum percentage of rows containing text values that match a date format | datetime | monitoring | monthly | Validity | text_match_date_format_percent | min_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the monthly text match date format percent data quality check.
Managing monthly text match date format percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_text_match_date_format_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_text_match_date_format_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_text_match_date_format_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_text_match_date_format_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_text_match_date_format_percent check on all tables and columns on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_text_match_date_format_percent
You can also run this check on all tables (and columns) on which the monthly_text_match_date_format_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
columns:
target_column:
monitoring_checks:
monthly:
datetime:
monthly_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value
FROM(
SELECT
original_table.*
FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value
FROM (
SELECT
original_table.*
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
monitoring_checks:
monthly:
datetime:
monthly_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
daily partition text match date format percent
Check description
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found. Stores a separate data quality check result for each daily partition.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_partition_text_match_date_format_percent |
Minimum percentage of rows containing text values that match a date format | datetime | partitioned | daily | Validity | text_match_date_format_percent | min_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily partition text match date format percent data quality check.
Managing daily partition text match date format percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_partition_text_match_date_format_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_partition_text_match_date_format_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_partition_text_match_date_format_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_partition_text_match_date_format_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_partition_text_match_date_format_percent check on all tables and columns on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_partition_text_match_date_format_percent
You can also run this check on all tables (and columns) on which the daily_partition_text_match_date_format_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
partitioned_checks:
daily:
datetime:
daily_partition_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
partitioned_checks:
daily:
datetime:
daily_partition_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(original_table."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(original_table."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY level_1, level_2CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(original_table."date_column" AS date) AS time_period,
CAST(CAST(original_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
monthly partition text match date format percent
Check description
Verifies that the values in text columns match one of the predefined date formats, such as an ISO 8601 date. Measures the percentage of valid date strings and raises a data quality issue when too many invalid date strings are found. Stores a separate data quality check result for each monthly partition.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
monthly_partition_text_match_date_format_percent |
Minimum percentage of rows containing text values that match a date format | datetime | partitioned | monthly | Validity | text_match_date_format_percent | min_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the monthly partition text match date format percent data quality check.
Managing monthly partition text match date format percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_partition_text_match_date_format_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_partition_text_match_date_format_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_partition_text_match_date_format_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_partition_text_match_date_format_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_partition_text_match_date_format_percent check on all tables and columns on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_partition_text_match_date_format_percent
You can also run this check on all tables (and columns) on which the monthly_partition_text_match_date_format_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
partitioned_checks:
monthly:
datetime:
monthly_partition_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
partitioned_checks:
monthly:
datetime:
monthly_partition_text_match_date_format_percent:
parameters:
date_format: YYYY-MM-DD
warning:
min_percent: 100.0
error:
min_percent: 99.0
fatal:
min_percent: 95.0
labels:
- This is the column that is analyzed for data quality issues
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the text_match_date_format_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_CONTAINS(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), r{{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_CONTAINS(CAST(analyzed_table.`target_column` AS STRING), r"^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
match(toString({{ lib.render_target_column('analyzed_table') }}), {{lib.render_date_format_regex(parameters.date_format)}}) != FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
match(toString(analyzed_table."target_column"), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') != FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR), {{ lib.render_date_format_regex(parameters.date_format) }}) IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN REGEXP_MATCHES(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$') IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR) LIKE_REGEXPR {{lib.render_date_format_regex(parameters.date_format)}}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) LIKE_REGEXPR '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(original_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
analyzed_table.`target_column` RLIKE '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$'
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_regex(lib.render_target_column('analyzed_table'), lib.render_date_format_regex(parameters.date_format), wrap_with_quotes = false) }}
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP_LIKE(analyzed_table.`target_column`, '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([0-9]{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(original_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} IS TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' IS TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
CAST({{lib.render_target_column('analyzed_table')}} AS VARCHAR) ~ {{lib.render_date_format_regex(parameters.date_format)}} = TRUE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }}), 100.0)
AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
CAST(analyzed_table."target_column" AS VARCHAR) ~ '^(\d{4})-(0[1-9]|1[0-2])-(0[1-9]|[1-2][0-9]|3[0-1])$' = TRUE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column"), 100.0)
AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{lib.render_target_column('analyzed_table')}} ~ {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
analyzed_table."target_column" ~ '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE({{ lib.render_target_column('analyzed_table') }}, {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(analyzed_table."target_column", '^([1-9]|[1-9][0-9]|[1-9][0-9][0-9]|[1-9][0-9][0-9][0-9])[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP(CAST({{ lib.render_target_column('analyzed_table') }} AS STRING), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.`target_column` IS NOT NULL AND
REGEXP(CAST(analyzed_table.`target_column` AS STRING), "^(\\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$") IS NOT FALSE
THEN 1
ELSE 0
END
) / COUNT(analyzed_table.`target_column`)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT_BIG({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
{{ lib.render_target_column('analyzed_table') }} LIKE {{lib.render_date_format_regex(parameters.date_format)}} ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT_BIG(analyzed_table.[target_column]) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table.[target_column] IS NOT NULL AND
analyzed_table.[target_column] LIKE '[1-9][0-9][0-9][0-9]-[0-1][0-9]-[0-3][0-9]' ESCAPE '~'
THEN 1
ELSE 0
END
) / COUNT_BIG(analyzed_table.[target_column])
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY level_1, level_2DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_SUBSTR(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR(4096)), {{lib.render_date_format_regex(parameters.date_format)}}) IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE 100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_SUBSTR(CAST(analyzed_table."target_column" AS VARCHAR(4096)), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$') IS NOT NULL
THEN 1
ELSE 0
END
) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN {{ lib.render_target_column('analyzed_table') }} IS NOT NULL AND
REGEXP_LIKE(CAST({{ lib.render_target_column('analyzed_table') }} AS VARCHAR), {{lib.render_date_format_regex(parameters.date_format)}})
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT({{ lib.render_target_column('analyzed_table') }})
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN 100.0
ELSE CAST(100.0 * SUM(
CASE
WHEN analyzed_table."target_column" IS NOT NULL AND
REGEXP_LIKE(CAST(analyzed_table."target_column" AS VARCHAR), '^(\d{4})[-](0[1-9]|1[0-2])[-](0[1-9]|[1][0-9]|[2][0-9]|3[01])$')
THEN 1
ELSE 0
END
) AS DOUBLE) / COUNT(analyzed_table."target_column")
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(original_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
What's next
- Learn how to configure data quality checks in DQOps
- Look at the examples of running data quality checks, targeting tables and columns