Skip to content

date values in future percent

date values in future percent checks

Description
Column level check that ensures that there are no more than a set percentage of date values in future in a monitored column.


profile date values in future percent

Check description
Verifies that the percentage of date values in future in a column does not exceed the maximum accepted percentage.

Check name Check type Time scale Sensor definition Quality rule
profile_date_values_in_future_percent profiling date_values_in_future_percent max_percent

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=profile_date_values_in_future_percent
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=profile_date_values_in_future_percent
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=profile_date_values_in_future_percent
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=profile_date_values_in_future_percent
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_date_values_in_future_percent
Check structure (Yaml)
      profiling_checks:
        datetime:
          profile_date_values_in_future_percent:
            warning:
              max_percent: 1.0
            error:
              max_percent: 2.0
            fatal:
              max_percent: 5.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  columns:
    target_column:
      profiling_checks:
        datetime:
          profile_date_values_in_future_percent:
            warning:
              max_percent: 1.0
            error:
              max_percent: 2.0
            fatal:
              max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  columns:
    target_column:
      profiling_checks:
        datetime:
          profile_date_values_in_future_percent:
            warning:
              max_percent: 1.0
            error:
              max_percent: 2.0
            fatal:
              max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

daily date values in future percent

Check description
Verifies that the percentage of date values in future in a column does not exceed the maximum accepted percentage. Stores the most recent captured value for each day when the data quality check was evaluated.

Check name Check type Time scale Sensor definition Quality rule
daily_date_values_in_future_percent recurring daily date_values_in_future_percent max_percent

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=daily_date_values_in_future_percent
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=daily_date_values_in_future_percent
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=daily_date_values_in_future_percent
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_date_values_in_future_percent
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_date_values_in_future_percent
Check structure (Yaml)
      recurring_checks:
        daily:
          datetime:
            daily_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  columns:
    target_column:
      recurring_checks:
        daily:
          datetime:
            daily_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
    TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
    TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
    CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  columns:
    target_column:
      recurring_checks:
        daily:
          datetime:
            daily_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
    TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(LOCALTIMESTAMP AS date) AS time_period,
    CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
    TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
    CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

monthly date values in future percent

Check description
Verifies that the percentage of date values in future in a column does not exceed the maximum accepted percentage. Stores the most recent row count for each month when the data quality check was evaluated.

Check name Check type Time scale Sensor definition Quality rule
monthly_date_values_in_future_percent recurring monthly date_values_in_future_percent max_percent

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=monthly_date_values_in_future_percent
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=monthly_date_values_in_future_percent
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=monthly_date_values_in_future_percent
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=monthly_date_values_in_future_percent
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_date_values_in_future_percent
Check structure (Yaml)
      recurring_checks:
        monthly:
          datetime:
            monthly_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  columns:
    target_column:
      recurring_checks:
        monthly:
          datetime:
            monthly_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table

Configuration with data grouping

Click to see more

Sample configuration (Yaml)

# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  columns:
    target_column:
      recurring_checks:
        monthly:
          datetime:
            monthly_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key
BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Redshift

{% import '/dialects/redshift.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN (analyzed_table."target_column")::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

Snowflake

{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_TO_TIMESTAMP({{ lib.render_target_column('analyzed_table') }}) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_TO_TIMESTAMP(analyzed_table."target_column") > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

SQL Server

{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > GETDATE()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN TRY_CAST(analyzed_table.[target_column] AS DATETIME) > SYSDATETIME()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
    CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 

daily partition date values in future percent

Check description
Verifies that the percentage of date values in future in a column does not exceed the maximum accepted percentage. Creates a separate data quality check (and an alert) for each daily partition.

Check name Check type Time scale Sensor definition Quality rule
daily_partition_date_values_in_future_percent partitioned daily date_values_in_future_percent max_percent

Enable check (Shell)
To enable this check provide connection name and check name in check enable command

dqo> check enable -c=connection_name -ch=daily_partition_date_values_in_future_percent
Run check (Shell)
To run this check provide check name in check run command
dqo> check run -ch=daily_partition_date_values_in_future_percent
It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below
dqo> check run -c=connection_name -ch=daily_partition_date_values_in_future_percent
It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_partition_date_values_in_future_percent
It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_partition_date_values_in_future_percent
Check structure (Yaml)
      partitioned_checks:
        daily:
          datetime:
            daily_partition_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    event_timestamp_column: col_event_timestamp
    ingestion_timestamp_column: col_inserted_at
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  columns:
    target_column:
      partitioned_checks:
        daily:
          datetime:
            daily_partition_date_values_in_future_percent:
              warning:
                max_percent: 1.0
              error:
                max_percent: 2.0
              fatal:
                max_percent: 5.0
      labels:
      - This is the column that is analyzed for data quality issues
    col_event_timestamp:
      labels:
      - optional column that stores the timestamp when the event/transaction happened
    col_inserted_at:
      labels:
      - optional column that stores the timestamp when row was ingested

BigQuery

{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    CAST(analyzed_table.`` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

MySQL

{% import '/dialects/mysql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE()
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME()
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table.`target_column` AS TIMESTAMP) > CURRENT_TIMESTAMP()
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Oracle

{% import '/dialects/oracle.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- endif -%}
{%- endmacro -%}

SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            {{ render_value_in_future() }}
        ) / COUNT(*)
    END AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
    {{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    CASE
        WHEN COUNT(*) = 0 THEN 100.0
        ELSE 100.0 * SUM(
            CASE
                WHEN SAFE_CAST(analyzed_table."target_column" AS TIMESTAMP) > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
        ) / COUNT(*)
    END AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT
        original_table.*,
    TRUNC(CAST(original_table."" AS DATE)) AS time_period,
    CAST(TRUNC(CAST(original_table."" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

PostgreSQL

{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}

{% macro render_value_in_future() -%}
    {%- if lib.is_instant(table.columns[column_name].type_snapshot.column_typ) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATE
                    THEN 1
                ELSE 0
            END
    {%- elif lib.is_local_date_time(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
            CASE
                WHEN {{ lib.render_target_column('analyzed_table') }} > CURRENT_DATETIME
                    THEN 1
                ELSE 0
            END
    {%- else -%}
            CASE
                WHEN ({{ lib.render_target_column('analyzed_table') }})::TIMESTAMP > CURRENT_TIMESTAMP
                    THEN 1
                ELSE 0
            END