datetime value in range date percent
datetime value in range date percent checks
Description
Column level check that ensures that there are no more than a set percentage of date values in given range in a monitored column.
profile datetime value in range date percent
Check description
Verifies that the percentage of date values in the range defined by the user in a column does not exceed the maximum accepted percentage.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
profile_datetime_value_in_range_date_percent | profiling | value_in_range_date_percent | max_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_datetime_value_in_range_date_percent
profiling_checks:
datetime:
profile_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
profiling_checks:
datetime:
profile_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
profiling_checks:
datetime:
profile_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
,
level_1, level_2
daily datetime value in range date percent
Check description
Verifies that the percentage of date values in the range defined by the user in a column does not exceed the maximum accepted percentage. Stores the most recent captured value for each day when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_datetime_value_in_range_date_percent | recurring | daily | value_in_range_date_percent | max_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_datetime_value_in_range_date_percent
recurring_checks:
daily:
datetime:
daily_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
daily:
datetime:
daily_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
recurring_checks:
daily:
datetime:
daily_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
,
level_1, level_2
monthly datetime value in range date percent
Check description
Verifies that the percentage of date values in the range defined by the user in a column does not exceed the maximum accepted percentage. Stores the most recent row count for each month when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
monthly_datetime_value_in_range_date_percent | recurring | monthly | value_in_range_date_percent | max_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_datetime_value_in_range_date_percent
recurring_checks:
monthly:
datetime:
monthly_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
monthly:
datetime:
monthly_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
recurring_checks:
monthly:
datetime:
monthly_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.[target_column]) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table.[target_column] AS DATE) >= '' AND TRY_CAST(analyzed_table.[target_column] AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
,
level_1, level_2
daily partition datetime value in range date percent
Check description
Verifies that the percentage of date values in the range defined by the user in a column does not exceed the maximum accepted percentage. Creates a separate data quality check (and an alert) for each daily partition.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_partition_datetime_value_in_range_date_percent | partitioned | daily | value_in_range_date_percent | max_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_partition_datetime_value_in_range_date_percent
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_partition_datetime_value_in_range_date_percent
partitioned_checks:
daily:
datetime:
daily_partition_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
partitioned_checks:
daily:
datetime:
daily_partition_datetime_value_in_range_date_percent:
warning:
max_percent: 1.0
error:
max_percent: 2.0
fatal:
max_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
SAFE_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN SAFE_CAST(analyzed_table.`target_column` AS DATE) >= '' AND SAFE_CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(analyzed_table.`` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table.`target_column`) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table.`target_column` AS DATE) >= '' AND CAST(analyzed_table.`target_column` AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM (
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}
) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
time_period,
time_period_utc
FROM (
SELECT
original_table.*,
TRUNC(CAST(original_table."" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true'-%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast()%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN CAST(analyzed_table."target_column" AS DATE) >= '' AND CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE
WHEN COUNT(analyzed_table."target_column") = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN TRY_CAST(analyzed_table."target_column" AS DATE) >= '' AND TRY_CAST(analyzed_table."target_column" AS DATE) <= '' THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{% macro render_date_format_cast() -%}
{%- if lib.is_local_date(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
{{ lib.render_target_column('analyzed_table') }}
{%- elif lib.is_local_time(table.columns[column_name].type_snapshot.column_type) == 'true' or lib.is_instant(table.columns[column_name].type_snapshot.column_type) == 'true' -%}
CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- else -%}
TRY_CAST({{ lib.render_target_column('analyzed_table') }} AS DATE)
{%- endif -%}
{%- endmacro -%}
{% macro render_ordering_column_names() %}
{%- if lib.time_series is not none and lib.time_series.mode != 'current_time' -%}
ORDER BY {{ lib.render_time_dimension_expression(lib.table_alias_prefix) }}
{%- elif (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) %}
{{ ', ' }}
{% endif %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{%- if not loop.first -%}
{{ ', ' }}
{%- endif -%}
{{ attribute }}
{%- endfor -%}
{%- endif -%}
{% endmacro %}
SELECT
CASE
WHEN COUNT({{ lib.render_target_column('analyzed_table') }}) = 0 THEN NULL
ELSE 100.0 * SUM(
CASE
WHEN {{ render_date_format_cast() }} >= {{ lib.make_text_constant(parameters.min_value) }} AND {{ render_date_format_cast() }} <= {{ lib.make_text_constant(parameters.max_value) }} THEN 1
ELSE 0
END
) / COUNT(*)
END AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- render_ordering_column_names() -}}