total not null count match percent
total not null count match percent checks
Description
Column level check that ensures that there are no more than a maximum percentage of difference of the row count of a tested table's column (counting the not null values) and of an row count of another (reference) table, also counting all rows with not null values.
profile total not null count match percent
Check description
Verifies that the percentage of difference in total not null count of a column in a table and total not null count of a column of another table does not exceed the set number. Stores the most recent captured value for each day when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
profile_total_not_null_count_match_percent | profiling | total_not_null_count_match_percent | diff_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_total_not_null_count_match_percent
profiling_checks:
accuracy:
profile_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
profiling_checks:
accuracy:
profile_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_project_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
daily total not null count match percent
Check description
Verifies that the percentage of difference in total not null count of a column in a table and total not null count of a column of another table does not exceed the set number. Stores the most recent captured value for each day when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_total_not_null_count_match_percent | recurring | daily | total_not_null_count_match_percent | diff_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_total_not_null_count_match_percent
recurring_checks:
daily:
accuracy:
daily_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
daily:
accuracy:
daily_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_project_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
monthly total not null count match percent
Check description
Verifies that the percentage of difference in total not null count of a column in a table and total not null count of a column of another table does not exceed the set number. Stores the most recent row count for each month when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
monthly_total_not_null_count_match_percent | recurring | monthly | total_not_null_count_match_percent | diff_percent |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_total_not_null_count_match_percent
recurring_checks:
monthly:
accuracy:
monthly_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
monthly:
accuracy:
monthly_total_not_null_count_match_percent:
parameters:
referenced_table: dim_customer
referenced_column: customer_id
warning:
max_diff_percent: 0.0
error:
max_diff_percent: 1.0
fatal:
max_diff_percent: 5.0
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_project_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro render_referenced_table(referenced_table) -%}
{%- if referenced_table.find(".") < 0 -%}
{{ lib.quote_identifier(lib.macro_database_name) }}.{{ lib.quote_identifier(lib.macro_schema_name) }}.{{- lib.quote_identifier(referenced_table) -}}
{%- else -%}
{{ referenced_table }}
{%- endif -%}
{%- endmacro -%}
SELECT
(SELECT
COUNT(referenced_table.{{ lib.quote_identifier(parameters.referenced_column) }})
FROM {{ render_referenced_table(parameters.referenced_table) }} AS referenced_table
) AS expected_value,
COUNT({{ lib.render_target_column('analyzed_table')}}) AS actual_value
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}