Skip to content

Last updated: July 22, 2025

DQOps YAML file definitions

The definition of YAML files used by DQOps to configure the data sources, monitored tables, and the configuration of activated data quality checks.

TableLevelDataQualityPolicyYaml

The configuration of a data quality policy at a table level, containing data quality checks that are applied on tables that match a search pattern.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
api_version DQOps YAML schema version string dqo/v1
kind File type enum source
table
sensor
provider_sensor
rule
check
settings
file_index
connection_similarity_index
dashboards
default_schedules
default_checks
default_table_checks
default_column_checks
default_notifications
default_table_checks
spec The specification (configuration) of the table-level data quality policy with checks that are applied on tables matching a pattern TableQualityPolicySpec

TableQualityPolicySpec

The default configuration of table-level data quality checks that are enabled as data observability checks to analyze basic measures and detect anomalies on tables. This configuration serves as a data quality policy that defines the data quality checks that are verified on matching tables.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
priority The priority of the pattern. Patterns with lower values are applied before patterns with higher priority values. integer
disabled Disables this data quality check configuration. The checks will not be activated. boolean
description The description (documentation) of this data quality check configuration. string
target The target table filter that are filtering the table and connection on which the default checks are applied. TargetTablePatternSpec
profiling_checks Configuration of data quality profiling checks that are enabled. Pick a check from a category, apply the parameters and rules to enable it. TableProfilingCheckCategoriesSpec
monitoring_checks Configuration of table level monitoring checks. Monitoring checks are data quality checks that are evaluated for each period of time (daily, weekly, monthly, etc.). A monitoring check stores only the most recent data quality check result for each period of time. TableMonitoringCheckCategoriesSpec
partitioned_checks Configuration of table level date/time partitioned checks. Partitioned data quality checks are evaluated for each partition separately, raising separate alerts at a partition level. The table does not need to be physically partitioned by date, it is possible to run data quality checks for each day or month of data separately. TablePartitionedCheckCategoriesSpec

TargetTablePatternSpec

The configuration of a table pattern to match default table checks.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
connection The data source connection name filter. Accepts wildcards in the format: conn, , conn*. string
schema The schema name filter. Accepts wildcards in the format: _prod, , pub*. string
table The table name filter. Accepts wildcards in the format: _customers, , fact_*. string
stage The table stage filter. Accepts wildcards in the format: _landing, , staging_*. string
table_priority The maximum table priority (inclusive) for tables that are covered by the default checks. integer
label The label filter. Accepts wildcards in the format: _customers, , fact_*. The label must be present on the connection or table. string