Skip to content

Last updated: July 22, 2025

DQOps YAML file definitions

The definition of YAML files used by DQOps to configure the data sources, monitored tables, and the configuration of activated data quality checks.

ColumnLevelDataQualityPolicyYaml

The configuration of a data quality policy at a column level, containing data quality checks that are applied on columns that match a search pattern.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
api_version DQOps YAML schema version string dqo/v1
kind File type enum source
table
sensor
provider_sensor
rule
check
settings
file_index
connection_similarity_index
dashboards
default_schedules
default_checks
default_table_checks
default_column_checks
default_notifications
default_column_checks
spec The specification (configuration) of the column-level data quality policy with checks that are applied on columns matching a pattern ColumnQualityPolicySpec

ColumnQualityPolicySpec

The default configuration of column-level data quality checks that are enabled as data observability checks to analyze basic measures and detect anomalies on columns. This configuration serves as a data quality policy that defines the data quality checks that are verified on matching columns.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
priority The priority of the pattern. Patterns with lower values are applied before patterns with higher priority values. integer
disabled Disables this data quality check configuration. The checks will not be activated. boolean
description The description (documentation) of this data quality check configuration. string
target The target column filter that are filtering the column, table and connection on which the default checks are applied. TargetColumnPatternSpec
profiling_checks Configuration of data quality profiling checks that are enabled. Pick a check from a category, apply the parameters and rules to enable it. ColumnProfilingCheckCategoriesSpec
monitoring_checks Configuration of table level monitoring checks. Monitoring checks are data quality checks that are evaluated for each period of time (daily, weekly, monthly, etc.). A monitoring check stores only the most recent data quality check result for each period of time. ColumnMonitoringCheckCategoriesSpec
partitioned_checks Configuration of table level date/time partitioned checks. Partitioned data quality checks are evaluated for each partition separately, raising separate alerts at a partition level. The table does not need to be physically partitioned by date, it is possible to run data quality checks for each day or month of data separately. ColumnPartitionedCheckCategoriesSpec

TargetColumnPatternSpec

The configuration of a column pattern to match default column checks. Includes also the pattern for the target table.

The structure of this object is described below

 Property name   Description                       Data type   Enum values   Default value   Sample values 
column The target column name filter. Accepts wildcards in the format: id, , c_*. string
data_type The target column data type filter. Filters by a physical (database specific) data type name imported from the data source. Accepts wildcards in the format: int, , big*. string
data_type_category The filter for a target data type category. enum numeric_integer
numeric_decimal
numeric_float
datetime_timestamp
datetime_datetime
datetime_date
datetime_time
text
clob
json
bool
binary
array
other
connection The data source connection name filter. Accepts wildcards in the format: conn, , conn*. string
schema The schema name filter. Accepts wildcards in the format: _prod, , pub*. string
table The table name filter. Accepts wildcards in the format: _customers, , fact_*. string
stage The table stage filter. Accepts wildcards in the format: _landing, , staging_*. string
table_priority The maximum table priority (inclusive) for tables that are covered by the default checks. integer
label The label filter. Accepts wildcards in the format: _customers, , fact_*. The label must be present on the connection or table. string