Last updated: July 22, 2025
DQOps REST API tables operations
Operations related to manage the metadata of imported tables, and managing the configuration of table-level data quality checks.
create_table
Creates a new table (adds a table metadata)
Follow the link to see the source code on GitHub.
POST
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Table specification | TableSpec |
Usage examples
Execution
curl -X POST http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"timestamp_columns\":{\"event_timestamp_column\":\"col1\",\"ingestion_timestamp_column\":\"col2\",\"partition_by_column\":\"col3\"},\"incremental_time_window\":{\"daily_partitioning_recent_days\":7,\"daily_partitioning_include_today\":true},\"profiling_checks\":{\"volume\":{\"profile_row_count\":{\"error\":{\"min_count\":1}}}},\"columns\":{}}"
Execution
from dqops import client
from dqops.client.api.tables import create_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = create_table.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import create_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = await create_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import create_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = create_table.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import create_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = await create_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
delete_table
Deletes a table
Follow the link to see the source code on GitHub.
DELETE
Return value
Property name | Description | Data type |
---|---|---|
dqo_queue_job_id |
DqoQueueJobId |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.tables import delete_table
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
call_result = await delete_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
find_similar_tables
Finds a list of tables that are most similar to a given table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/similar
Return value
Property name | Description | Data type |
---|---|---|
similar_table_model |
List[SimilarTableModel] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
limit |
The maximum number of similar tables to return. The default result is 50 similar tables. | long |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.tables import find_similar_tables
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = find_similar_tables.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import find_similar_tables
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await find_similar_tables.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table
Return the table specification
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
table_model |
TableModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_basic
Return the basic table information
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/basic
Return value
Property name | Description | Data type |
---|---|---|
table_list_model |
TableListModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/basic^
-H "Accept: application/json"
Expand to see the returned result
{
"connection_name" : "sample_connection",
"table_hash" : 7188561880498907939,
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"do_not_collect_error_samples_in_profiling" : false,
"always_collect_error_samples_in_monitoring" : false,
"has_any_configured_checks" : true,
"has_any_configured_profiling_checks" : true,
"run_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true
},
"run_profiling_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "profiling"
},
"run_monitoring_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "monitoring"
},
"run_partition_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "partitioned"
},
"data_clean_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"deleteErrors" : true,
"deleteStatistics" : true,
"deleteCheckResults" : true,
"deleteSensorReadouts" : true,
"deleteErrorSamples" : true,
"deleteIncidents" : true,
"deleteChecksConfiguration" : false
},
"advanced_properties" : { },
"can_edit" : true,
"can_collect_statistics" : true,
"can_run_checks" : true,
"can_delete_data" : true
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_basic
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_basic.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_basic
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_basic.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_basic
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_basic.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_basic
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_basic.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
get_table_columns_monitoring_checks_model
Return a UI friendly model of configurations for column-level data quality monitoring checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columnchecks/monitoring/{timeScale}/model
Return value
Property name | Description | Data type |
---|---|---|
check_configuration_model |
List[CheckConfigurationModel] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Check time-scale | CheckTimeScale | |
column_name_pattern |
Column name pattern | string | |
column_data_type |
Column data-type | string | |
check_category |
Check category | string | |
check_name |
Check name | string | |
check_enabled |
Check enabled | boolean | |
check_configured |
Check configured | boolean | |
limit |
Limit of results, the default value is 1000 | long |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_monitoring_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_columns_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_monitoring_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_columns_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_monitoring_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_columns_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_monitoring_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_columns_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
get_table_columns_partitioned_checks_model
Return a UI friendly model of configurations for column-level data quality partitioned checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columnchecks/partitioned/{timeScale}/model
Return value
Property name | Description | Data type |
---|---|---|
check_configuration_model |
List[CheckConfigurationModel] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Check time-scale | CheckTimeScale | |
column_name_pattern |
Column name pattern | string | |
column_data_type |
Column data-type | string | |
check_category |
Check category | string | |
check_name |
Check name | string | |
check_enabled |
Check enabled | boolean | |
check_configured |
Check configured | boolean | |
limit |
Limit of results, the default value is 1000 | long |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_partitioned_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_columns_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_partitioned_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_columns_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_partitioned_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_columns_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_partitioned_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_columns_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
get_table_columns_profiling_checks_model
Return a UI friendly model of configurations for column-level data quality profiling checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columnchecks/profiling/model
Return value
Property name | Description | Data type |
---|---|---|
check_configuration_model |
List[CheckConfigurationModel] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
column_name_pattern |
Column name pattern | string | |
column_data_type |
Column data-type | string | |
check_category |
Check category | string | |
check_name |
Check name | string | |
check_enabled |
Check enabled | boolean | |
check_configured |
Check configured | boolean | |
limit |
Limit of results, the default value is 1000 | long |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_profiling_checks_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_columns_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_profiling_checks_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_columns_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_profiling_checks_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_columns_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_columns_profiling_checks_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_columns_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_comments
Return the list of comments added to a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/comments
Return value
Property name | Description | Data type |
---|---|---|
comment_spec |
List[CommentSpec] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/comments^
-H "Accept: application/json"
Expand to see the returned result
Execution
from dqops import client
from dqops.client.api.tables import get_table_comments
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_comments.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
[
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_table_comments
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_comments.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
[
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_table_comments
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_comments.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
[
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_table_comments
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_comments.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
[
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
get_table_daily_monitoring_checks
Return the configuration of daily table level data quality monitoring on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/daily
Return value
Property name | Description | Data type |
---|---|---|
table_daily_monitoring_check_categories_spec |
TableDailyMonitoringCheckCategoriesSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_monitoring_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_daily_monitoring_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_monitoring_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_daily_monitoring_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_monitoring_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_daily_monitoring_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_monitoring_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_daily_monitoring_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
get_table_daily_partitioned_checks
Return the configuration of daily table level data quality partitioned checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/daily
Return value
Property name | Description | Data type |
---|---|---|
table_daily_partitioned_check_categories_spec |
TableDailyPartitionedCheckCategoriesSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_partitioned_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_daily_partitioned_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_partitioned_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_daily_partitioned_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_partitioned_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_daily_partitioned_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_daily_partitioned_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_daily_partitioned_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
get_table_default_grouping_configuration
Return the default data grouping configuration for a table.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/defaultgroupingconfiguration
Return value
Property name | Description | Data type |
---|---|---|
data_grouping_configuration_spec |
DataGroupingConfigurationSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_default_grouping_configuration
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_default_grouping_configuration.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_default_grouping_configuration
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_default_grouping_configuration.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_default_grouping_configuration
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_default_grouping_configuration.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_default_grouping_configuration
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_default_grouping_configuration.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_incident_grouping
Return the configuration of incident grouping on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/incidentgrouping
Return value
Property name | Description | Data type |
---|---|---|
table_incident_grouping_spec |
TableIncidentGroupingSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_incident_grouping
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_incident_grouping.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_incident_grouping
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_incident_grouping.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_incident_grouping
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_incident_grouping.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_incident_grouping
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_incident_grouping.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_labels
Return the list of labels assigned to a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/labels
Return value
Property name | Description | Data type |
---|---|---|
string |
List[string] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_labels
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_labels.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_labels
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_labels.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_monitoring_checks_basic_model
Return a simplistic UI friendly model of table level data quality monitoring on a table for a given time scale
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/{timeScale}/model/basic
Return value
Property name | Description | Data type |
---|---|---|
check_container_list_model |
CheckContainerListModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/monitoring/daily/model/basic^
-H "Accept: application/json"
Expand to see the returned result
{
"checks" : [ {
"check_category" : "sample_category_1",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
} ],
"can_edit" : false,
"can_run_checks" : true,
"can_delete_data" : true
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
get_table_monitoring_checks_model
Return a UI friendly model of configurations for table level data quality monitoring on a table for a given time scale
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/{timeScale}/model
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/monitoring/daily/model^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_monitoring_checks_model_filter
Return a UI friendly model of configurations for table level data quality monitoring on a table for a given time scale, filtered by category and check name.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/{timeScale}/model/filter/{checkCategory}/{checkName}
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/monitoring/daily/model/filter/sample_category/sample_check^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_monitoring_checks_monthly
Return the configuration of monthly table level data quality monitoring on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/monthly
Return value
Property name | Description | Data type |
---|---|---|
table_monthly_monitoring_check_categories_spec |
TableMonthlyMonitoringCheckCategoriesSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_monthly
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_monthly
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_monthly
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_monthly
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
get_table_monitoring_checks_templates
Return available data quality checks on a requested table.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/bulkenable/monitoring/{timeScale}
Return value
Property name | Description | Data type |
---|---|---|
check_template |
List[CheckTemplate] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_templates
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_templates
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_templates
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_monitoring_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_monitoring_checks_templates
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_monitoring_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
get_table_partitioned_checks_basic_model
Return a simplistic UI friendly model of table level data quality partitioned checks on a table for a given time scale
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/{timeScale}/model/basic
Return value
Property name | Description | Data type |
---|---|---|
check_container_list_model |
CheckContainerListModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioned/daily/model/basic^
-H "Accept: application/json"
Expand to see the returned result
{
"checks" : [ {
"check_category" : "sample_category_1",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
} ],
"can_edit" : false,
"can_run_checks" : true,
"can_delete_data" : true
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
get_table_partitioned_checks_model
Return a UI friendly model of configurations for table level data quality partitioned checks on a table for a given time scale
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/{timeScale}/model
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioned/daily/model^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_partitioned_checks_model_filter
Return a UI friendly model of configurations for table level data quality partitioned checks on a table for a given time scale, filtered by category and check name.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/{timeScale}/model/filter/{checkCategory}/{checkName}
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioned/daily/model/filter/sample_category/sample_check^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_partitioned_checks_monthly
Return the configuration of monthly table level data quality partitioned checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/monthly
Return value
Property name | Description | Data type |
---|---|---|
table_monthly_partitioned_check_categories_spec |
TableMonthlyPartitionedCheckCategoriesSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_monthly
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_monthly
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_monthly
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_monthly
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
get_table_partitioned_checks_templates
Return available data quality checks on a requested table.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/bulkenable/partitioned/{timeScale}
Return value
Property name | Description | Data type |
---|---|---|
check_template |
List[CheckTemplate] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_templates
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_templates
from dqops.client.models import CheckTimeScale
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_templates
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioned_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioned_checks_templates
from dqops.client.models import CheckTimeScale
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioned_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client
)
get_table_partitioning
Return the table partitioning information
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioning
Return value
Property name | Description | Data type |
---|---|---|
table_partitioning_model |
TablePartitioningModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioning^
-H "Accept: application/json"
Expand to see the returned result
{
"connection_name" : "sample_connection",
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"timestamp_columns" : {
"event_timestamp_column" : "col1",
"ingestion_timestamp_column" : "col2",
"partition_by_column" : "col3"
},
"incremental_time_window" : {
"daily_partitioning_recent_days" : 7,
"daily_partitioning_include_today" : true
},
"can_edit" : true
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioning
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_partitioning.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioning
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_partitioning.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioning
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_partitioning.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_partitioning
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_partitioning.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
get_table_profiling_checks
Return the configuration of table level data quality checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling
Return value
Property name | Description | Data type |
---|---|---|
table_profiling_check_categories_spec |
TableProfilingCheckCategoriesSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
get_table_profiling_checks_basic_model
Return a simplistic UI friendly model of all table level data quality profiling checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling/model/basic
Return value
Property name | Description | Data type |
---|---|---|
check_container_list_model |
CheckContainerListModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/profiling/model/basic^
-H "Accept: application/json"
Expand to see the returned result
{
"checks" : [ {
"check_category" : "sample_category_1",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_1",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_2",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_1",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
}, {
"check_category" : "sample_category_2",
"check_name" : "sample_check_3",
"help_text" : "Sample help text",
"configured" : true
} ],
"can_edit" : false,
"can_run_checks" : true,
"can_delete_data" : true
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_basic_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_basic_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_basic_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_basic_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_basic_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_basic_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
checks=[
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_1',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_2',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_1',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
),
CheckListModel(
check_category='sample_category_2',
check_name='sample_check_3',
help_text='Sample help text',
configured=True
)
],
can_edit=False,
can_run_checks=True,
can_delete_data=True
)
get_table_profiling_checks_model
Return a UI friendly model of configurations for all table level data quality profiling checks on a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling/model
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/profiling/model^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_profiling_checks_model_filter
Return a UI friendly model of configurations for all table level data quality profiling checks on a table passing a filter
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling/model/filter/{checkCategory}/{checkName}
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/profiling/model/filter/sample_category/sample_check^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model_filter
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model_filter
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model_filter
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_model_filter.sync(
'sample_connection',
'sample_schema',
'sample_table',
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_model_filter
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_model_filter.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
'sample_category',
'sample_check',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_profiling_checks_templates
Return available data quality checks on a requested table.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/bulkenable/profiling
Return value
Property name | Description | Data type |
---|---|---|
check_template |
List[CheckTemplate] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
check_category |
Check category | string | |
check_name |
Check name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_templates
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_templates
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_templates
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_checks_templates.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_checks_templates
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_checks_templates.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_table_profiling_status
Return the status of profiling the table, which provides hints to the user about which profiling steps were not yet performed
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profilingstatus
Return value
Property name | Description | Data type |
---|---|---|
table_profiling_setup_status_model |
TableProfilingSetupStatusModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/profilingstatus^
-H "Accept: application/json"
Expand to see the returned result
{
"connection_name" : "sample_connection",
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"basic_statistics_collected" : false,
"profiling_checks_configured" : false,
"monitoring_checks_configured" : false,
"partition_checks_configured" : false,
"check_results_present" : false
}
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_status
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_profiling_status.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingSetupStatusModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
basic_statistics_collected=False,
profiling_checks_configured=False,
monitoring_checks_configured=False,
partition_checks_configured=False,
check_results_present=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_status
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_status.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingSetupStatusModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
basic_statistics_collected=False,
profiling_checks_configured=False,
monitoring_checks_configured=False,
partition_checks_configured=False,
check_results_present=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_status
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_profiling_status.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingSetupStatusModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
basic_statistics_collected=False,
profiling_checks_configured=False,
monitoring_checks_configured=False,
partition_checks_configured=False,
check_results_present=False
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_profiling_status
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_profiling_status.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Expand to see the returned result
TableProfilingSetupStatusModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
basic_statistics_collected=False,
profiling_checks_configured=False,
monitoring_checks_configured=False,
partition_checks_configured=False,
check_results_present=False
)
get_table_scheduling_group_override
Return the schedule override configuration for a table
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/schedulesoverride/{schedulingGroup}
Return value
Property name | Description | Data type |
---|---|---|
cron_schedule_spec |
CronScheduleSpec |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
scheduling_group |
Check scheduling group (named schedule) | CheckRunScheduleGroup |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_scheduling_group_override.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_scheduling_group_override.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_scheduling_group_override.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_scheduling_group_override.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client
)
get_table_statistics
Returns a list of the profiler (statistics) metrics on a chosen table captured during the most recent statistics collection.
Follow the link to see the source code on GitHub.
GET
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/statistics
Return value
Property name | Description | Data type |
---|---|---|
table_statistics_model |
TableStatisticsModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.tables import get_table_statistics
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_statistics.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.tables import get_table_statistics
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_statistics.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client
)
get_tables
Returns a list of tables inside a connection/schema
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
table_list_model |
List[TableListModel] |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
label |
Optional labels to filter the tables | List[string] | |
page |
Page number, the first page is 1 | long | |
limit |
Page size, the default is 100 rows, but paging is disabled is neither page and limit parameters are provided | long | |
filter |
Optional table name filter | string | |
check_type |
Optional parameter for the check type, when provided, returns the results for data quality dimensions for the data quality checks of that type | CheckType |
Usage examples
Execution
curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables^
-H "Accept: application/json"
Expand to see the returned result
[ {
"connection_name" : "sample_connection",
"table_hash" : 7188561880498907939,
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"do_not_collect_error_samples_in_profiling" : false,
"always_collect_error_samples_in_monitoring" : false,
"has_any_configured_checks" : true,
"has_any_configured_profiling_checks" : true,
"run_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true
},
"run_profiling_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "profiling"
},
"run_monitoring_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "monitoring"
},
"run_partition_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "partitioned"
},
"data_clean_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"deleteErrors" : true,
"deleteStatistics" : true,
"deleteCheckResults" : true,
"deleteSensorReadouts" : true,
"deleteErrorSamples" : true,
"deleteIncidents" : true,
"deleteChecksConfiguration" : false
},
"advanced_properties" : { },
"can_edit" : true,
"can_collect_statistics" : true,
"can_run_checks" : true,
"can_delete_data" : true
}, {
"connection_name" : "sample_connection",
"table_hash" : 7188561880498907939,
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"do_not_collect_error_samples_in_profiling" : false,
"always_collect_error_samples_in_monitoring" : false,
"has_any_configured_checks" : true,
"has_any_configured_profiling_checks" : true,
"run_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true
},
"run_profiling_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "profiling"
},
"run_monitoring_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "monitoring"
},
"run_partition_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "partitioned"
},
"data_clean_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"deleteErrors" : true,
"deleteStatistics" : true,
"deleteCheckResults" : true,
"deleteSensorReadouts" : true,
"deleteErrorSamples" : true,
"deleteIncidents" : true,
"deleteChecksConfiguration" : false
},
"advanced_properties" : { },
"can_edit" : true,
"can_collect_statistics" : true,
"can_run_checks" : true,
"can_delete_data" : true
}, {
"connection_name" : "sample_connection",
"table_hash" : 7188561880498907939,
"target" : {
"schema_name" : "sample_schema",
"table_name" : "sample_table"
},
"do_not_collect_error_samples_in_profiling" : false,
"always_collect_error_samples_in_monitoring" : false,
"has_any_configured_checks" : true,
"has_any_configured_profiling_checks" : true,
"run_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true
},
"run_profiling_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "profiling"
},
"run_monitoring_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "monitoring"
},
"run_partition_checks_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"enabled" : true,
"checkType" : "partitioned"
},
"data_clean_job_template" : {
"connection" : "sample_connection",
"fullTableName" : "sample_schema.sample_table",
"deleteErrors" : true,
"deleteStatistics" : true,
"deleteCheckResults" : true,
"deleteSensorReadouts" : true,
"deleteErrorSamples" : true,
"deleteIncidents" : true,
"deleteChecksConfiguration" : false
},
"advanced_properties" : { },
"can_edit" : true,
"can_collect_statistics" : true,
"can_run_checks" : true,
"can_delete_data" : true
} ]
Execution
from dqops import client
from dqops.client.api.tables import get_tables
from dqops.client.models import CheckType
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_tables.sync(
'sample_connection',
'sample_schema',
client=dqops_client
)
Expand to see the returned result
[
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_tables
from dqops.client.models import CheckType
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_tables.asyncio(
'sample_connection',
'sample_schema',
client=dqops_client
)
Expand to see the returned result
[
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_tables
from dqops.client.models import CheckType
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_tables.sync(
'sample_connection',
'sample_schema',
client=dqops_client
)
Expand to see the returned result
[
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
]
Execution
from dqops import client
from dqops.client.api.tables import get_tables
from dqops.client.models import CheckType
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_tables.asyncio(
'sample_connection',
'sample_schema',
client=dqops_client
)
Expand to see the returned result
[
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
),
TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
]
update_table
Updates an existing table specification, changing all the fields
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Full table specification | TableSpec |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"timestamp_columns\":{\"event_timestamp_column\":\"col1\",\"ingestion_timestamp_column\":\"col2\",\"partition_by_column\":\"col3\"},\"incremental_time_window\":{\"daily_partitioning_recent_days\":7,\"daily_partitioning_include_today\":true},\"profiling_checks\":{\"volume\":{\"profile_row_count\":{\"error\":{\"min_count\":1}}}},\"columns\":{}}"
Execution
from dqops import client
from dqops.client.api.tables import update_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = update_table.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = await update_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = update_table.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table
from dqops.client.models import ColumnSpecMap, \
DataGroupingConfigurationSpecMap, \
MinCountRule1ParametersSpec, \
PartitionIncrementalTimeWindowSpec, \
TableComparisonConfigurationSpecMap, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableSpec(
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
groupings=DataGroupingConfigurationSpecMap(),
table_comparisons=TableComparisonConfigurationSpecMap(),
profiling_checks=TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
),
monitoring_checks=TableMonitoringCheckCategoriesSpec(),
partitioned_checks=TablePartitionedCheckCategoriesSpec(),
columns=ColumnSpecMap(),
advanced_properties={
}
)
call_result = await update_table.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_basic
Updates the basic field of an existing table, changing only the most important fields.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/basic
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Table basic model with the updated settings | TableListModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/basic^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"connection_name\":\"sample_connection\",\"table_hash\":7188561880498907939,\"target\":{\"schema_name\":\"sample_schema\",\"table_name\":\"sample_table\"},\"do_not_collect_error_samples_in_profiling\":false,\"always_collect_error_samples_in_monitoring\":false,\"has_any_configured_checks\":true,\"has_any_configured_profiling_checks\":true,\"run_checks_job_template\":{\"connection\":\"sample_connection\",\"fullTableName\":\"sample_schema.sample_table\",\"enabled\":true},\"run_profiling_checks_job_template\":{\"connection\":\"sample_connection\",\"fullTableName\":\"sample_schema.sample_table\",\"enabled\":true,\"checkType\":\"profiling\"},\"run_monitoring_checks_job_template\":{\"connection\":\"sample_connection\",\"fullTableName\":\"sample_schema.sample_table\",\"enabled\":true,\"checkType\":\"monitoring\"},\"run_partition_checks_job_template\":{\"connection\":\"sample_connection\",\"fullTableName\":\"sample_schema.sample_table\",\"enabled\":true,\"checkType\":\"partitioned\"},\"data_clean_job_template\":{\"connection\":\"sample_connection\",\"fullTableName\":\"sample_schema.sample_table\",\"deleteErrors\":true,\"deleteStatistics\":true,\"deleteCheckResults\":true,\"deleteSensorReadouts\":true,\"deleteErrorSamples\":true,\"deleteIncidents\":true,\"deleteChecksConfiguration\":false},\"advanced_properties\":{},\"can_edit\":true,\"can_collect_statistics\":true,\"can_run_checks\":true,\"can_delete_data\":true}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_basic
from dqops.client.models import CheckSearchFilters, \
DeleteStoredDataQueueJobParameters, \
PhysicalTableName, \
TableListModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
call_result = update_table_basic.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_basic
from dqops.client.models import CheckSearchFilters, \
DeleteStoredDataQueueJobParameters, \
PhysicalTableName, \
TableListModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
call_result = await update_table_basic.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_basic
from dqops.client.models import CheckSearchFilters, \
DeleteStoredDataQueueJobParameters, \
PhysicalTableName, \
TableListModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
call_result = update_table_basic.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_basic
from dqops.client.models import CheckSearchFilters, \
DeleteStoredDataQueueJobParameters, \
PhysicalTableName, \
TableListModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableListModel(
connection_name='sample_connection',
table_hash=7188561880498907939,
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
disabled=False,
do_not_collect_error_samples_in_profiling=False,
always_collect_error_samples_in_monitoring=False,
has_any_configured_checks=True,
has_any_configured_profiling_checks=True,
has_any_configured_monitoring_checks=False,
has_any_configured_partition_checks=False,
partitioning_configuration_missing=False,
run_checks_job_template=CheckSearchFilters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_profiling_checks_job_template=CheckSearchFilters(
check_type=CheckType.PROFILING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_monitoring_checks_job_template=CheckSearchFilters(
check_type=CheckType.MONITORING,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
run_partition_checks_job_template=CheckSearchFilters(
check_type=CheckType.PARTITIONED,
connection='sample_connection',
full_table_name='sample_schema.sample_table',
enabled=True
),
data_clean_job_template=DeleteStoredDataQueueJobParameters(
connection='sample_connection',
full_table_name='sample_schema.sample_table',
delete_errors=True,
delete_statistics=True,
delete_check_results=True,
delete_sensor_readouts=True,
delete_error_samples=True,
delete_incidents=True,
delete_checks_configuration=False
),
advanced_properties={
},
can_edit=True,
can_collect_statistics=True,
can_run_checks=True,
can_delete_data=True
)
call_result = await update_table_basic.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_comments
Updates the list of comments on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/comments
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
List of comments to attach (replace) on a table or an empty object to clear the list of comments on a table | List[CommentSpec] |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/comments^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"[{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"},{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"},{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"}]"
Execution
from dqops import client
from dqops.client.api.tables import update_table_comments
from dqops.client.models import CommentSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = [
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
call_result = update_table_comments.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_comments
from dqops.client.models import CommentSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = [
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
call_result = await update_table_comments.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_comments
from dqops.client.models import CommentSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = [
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
call_result = update_table_comments.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_comments
from dqops.client.models import CommentSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = [
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
),
CommentSpec(
date=Some date/time value: [2007-12-03T10:15:30],
comment_by='sample_user',
comment='Sample comment'
)
]
call_result = await update_table_comments.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_daily_monitoring_checks
Updates the list of daily table level data quality monitoring on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/daily
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Configuration of daily table level data quality monitoring to store or an empty object to remove all data quality monitoring on the table level (column level monitoring are preserved). | TableDailyMonitoringCheckCategoriesSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_daily_monitoring_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyMonitoringChecksSpecMap, \
TableDailyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
call_result = update_table_daily_monitoring_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_daily_monitoring_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyMonitoringChecksSpecMap, \
TableDailyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
call_result = await update_table_daily_monitoring_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_daily_monitoring_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyMonitoringChecksSpecMap, \
TableDailyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
call_result = update_table_daily_monitoring_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_daily_monitoring_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyMonitoringChecksSpecMap, \
TableDailyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
call_result = await update_table_daily_monitoring_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_default_grouping_configuration
Updates the default data grouping configuration at a table level.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/defaultgroupingconfiguration
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Default data grouping configuration to store or an empty object to clear the data grouping configuration on a table level | DataGroupingConfigurationSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_default_grouping_configuration
from dqops.client.models import DataGroupingConfigurationSpec, \
DataGroupingDimensionSource, \
DataGroupingDimensionSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = DataGroupingConfigurationSpec(
level_3=DataGroupingDimensionSpec(
source=DataGroupingDimensionSource.COLUMN_VALUE,
column='sample_column'
)
)
call_result = update_table_default_grouping_configuration.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_default_grouping_configuration
from dqops.client.models import DataGroupingConfigurationSpec, \
DataGroupingDimensionSource, \
DataGroupingDimensionSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = DataGroupingConfigurationSpec(
level_3=DataGroupingDimensionSpec(
source=DataGroupingDimensionSource.COLUMN_VALUE,
column='sample_column'
)
)
call_result = await update_table_default_grouping_configuration.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_default_grouping_configuration
from dqops.client.models import DataGroupingConfigurationSpec, \
DataGroupingDimensionSource, \
DataGroupingDimensionSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = DataGroupingConfigurationSpec(
level_3=DataGroupingDimensionSpec(
source=DataGroupingDimensionSource.COLUMN_VALUE,
column='sample_column'
)
)
call_result = update_table_default_grouping_configuration.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_default_grouping_configuration
from dqops.client.models import DataGroupingConfigurationSpec, \
DataGroupingDimensionSource, \
DataGroupingDimensionSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = DataGroupingConfigurationSpec(
level_3=DataGroupingDimensionSpec(
source=DataGroupingDimensionSource.COLUMN_VALUE,
column='sample_column'
)
)
call_result = await update_table_default_grouping_configuration.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_incident_grouping
Updates the configuration of incident grouping on a table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/incidentgrouping
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
New configuration of the table's incident grouping | TableIncidentGroupingSpec |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/incidentgrouping^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"grouping_level\":\"table_dimension\",\"minimum_severity\":\"warning\",\"divide_by_data_group\":true,\"disabled\":false}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_incident_grouping
from dqops.client.models import IncidentGroupingLevel, \
MinimumGroupingSeverityLevel, \
TableIncidentGroupingSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableIncidentGroupingSpec(
grouping_level=IncidentGroupingLevel.TABLE_DIMENSION,
minimum_severity=MinimumGroupingSeverityLevel.WARNING,
divide_by_data_group=True,
disabled=False
)
call_result = update_table_incident_grouping.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_incident_grouping
from dqops.client.models import IncidentGroupingLevel, \
MinimumGroupingSeverityLevel, \
TableIncidentGroupingSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableIncidentGroupingSpec(
grouping_level=IncidentGroupingLevel.TABLE_DIMENSION,
minimum_severity=MinimumGroupingSeverityLevel.WARNING,
divide_by_data_group=True,
disabled=False
)
call_result = await update_table_incident_grouping.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_incident_grouping
from dqops.client.models import IncidentGroupingLevel, \
MinimumGroupingSeverityLevel, \
TableIncidentGroupingSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableIncidentGroupingSpec(
grouping_level=IncidentGroupingLevel.TABLE_DIMENSION,
minimum_severity=MinimumGroupingSeverityLevel.WARNING,
divide_by_data_group=True,
disabled=False
)
call_result = update_table_incident_grouping.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_incident_grouping
from dqops.client.models import IncidentGroupingLevel, \
MinimumGroupingSeverityLevel, \
TableIncidentGroupingSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableIncidentGroupingSpec(
grouping_level=IncidentGroupingLevel.TABLE_DIMENSION,
minimum_severity=MinimumGroupingSeverityLevel.WARNING,
divide_by_data_group=True,
disabled=False
)
call_result = await update_table_incident_grouping.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_labels
Updates the list of assigned labels of an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/labels
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
List of labels to attach (replace) on a table or an empty object to clear the list of labels on a table | List[string] |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_labels
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = [
'sampleString_1',
'sampleString_2',
'sampleString_3'
]
call_result = update_table_labels.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_labels
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = [
'sampleString_1',
'sampleString_2',
'sampleString_3'
]
call_result = await update_table_labels.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_labels
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = [
'sampleString_1',
'sampleString_2',
'sampleString_3'
]
call_result = update_table_labels.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_labels
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = [
'sampleString_1',
'sampleString_2',
'sampleString_3'
]
call_result = await update_table_labels.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_monitoring_checks_model
Updates the data quality monitoring from a model that contains a patch with changes.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/{timeScale}/model
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality monitoring configuration. | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/monitoring/daily/model^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_monitoring_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_monitoring_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
update_table_monitoring_checks_monthly
Updates the list of monthly table level data quality monitoring on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/monitoring/monthly
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Configuration of monthly table level data quality monitoring to store or an empty object to remove all data quality monitoring on the table level (column level monitoring are preserved). | TableMonthlyMonitoringCheckCategoriesSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyMonitoringChecksSpecMap, \
TableMonthlyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
call_result = update_table_monitoring_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyMonitoringChecksSpecMap, \
TableMonthlyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
call_result = await update_table_monitoring_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyMonitoringChecksSpecMap, \
TableMonthlyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
call_result = update_table_monitoring_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_monitoring_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyMonitoringChecksSpecMap, \
TableMonthlyMonitoringCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyMonitoringChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableMonthlyMonitoringCheckCategoriesSpec(
volume=TableVolumeMonthlyMonitoringChecksSpec(
monthly_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyMonitoringChecksSpecMap()
)
call_result = await update_table_monitoring_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_partitioned_checks_daily
Updates the list of daily table level data quality partitioned checks on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/daily
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Configuration of daily table level data quality partitioned checks to store or an empty object to remove all data quality partitioned checks on the table level (column level partitioned checks are preserved). | TableDailyPartitionedCheckCategoriesSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_daily
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyPartitionedChecksSpecMap, \
TableDailyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
call_result = update_table_partitioned_checks_daily.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_daily
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyPartitionedChecksSpecMap, \
TableDailyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
call_result = await update_table_partitioned_checks_daily.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_daily
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyPartitionedChecksSpecMap, \
TableDailyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
call_result = update_table_partitioned_checks_daily.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_daily
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonDailyPartitionedChecksSpecMap, \
TableDailyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeDailyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableDailyPartitionedCheckCategoriesSpec(
volume=TableVolumeDailyPartitionedChecksSpec(
daily_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyPartitionedChecksSpecMap()
)
call_result = await update_table_partitioned_checks_daily.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_partitioned_checks_model
Updates the data quality partitioned checks from a model that contains a patch with changes.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/{timeScale}/model
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
time_scale |
Time scale | CheckTimeScale |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality partitioned checks configuration. | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioned/daily/model^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_partitioned_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
CheckTimeScale, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_partitioned_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckTimeScale.daily,
client=dqops_client,
json_body=request_body
)
update_table_partitioned_checks_monthly
Updates the list of monthly table level data quality partitioned checks on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioned/monthly
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Configuration of monthly table level data quality partitioned checks to store or an empty object to remove all data quality partitioned checks on the table level (column level partitioned checks are preserved). | TableMonthlyPartitionedCheckCategoriesSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyPartitionedChecksSpecMap, \
TableMonthlyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
call_result = update_table_partitioned_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyPartitionedChecksSpecMap, \
TableMonthlyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
call_result = await update_table_partitioned_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyPartitionedChecksSpecMap, \
TableMonthlyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
call_result = update_table_partitioned_checks_monthly.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioned_checks_monthly
from dqops.client.models import MinCountRule1ParametersSpec, \
TableComparisonMonthlyPartitionedChecksSpecMap, \
TableMonthlyPartitionedCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeMonthlyPartitionedChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableMonthlyPartitionedCheckCategoriesSpec(
volume=TableVolumeMonthlyPartitionedChecksSpec(
monthly_partition_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonMonthlyPartitionedChecksSpecMap()
)
call_result = await update_table_partitioned_checks_monthly.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_partitioning
Updates the table partitioning configuration of an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/partitioning
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Table partitioning model with the updated settings | TablePartitioningModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/partitioning^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"connection_name\":\"sample_connection\",\"target\":{\"schema_name\":\"sample_schema\",\"table_name\":\"sample_table\"},\"timestamp_columns\":{\"event_timestamp_column\":\"col1\",\"ingestion_timestamp_column\":\"col2\",\"partition_by_column\":\"col3\"},\"incremental_time_window\":{\"daily_partitioning_recent_days\":7,\"daily_partitioning_include_today\":true},\"can_edit\":true}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioning
from dqops.client.models import PartitionIncrementalTimeWindowSpec, \
PhysicalTableName, \
TablePartitioningModel, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
call_result = update_table_partitioning.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioning
from dqops.client.models import PartitionIncrementalTimeWindowSpec, \
PhysicalTableName, \
TablePartitioningModel, \
TimestampColumnsSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
call_result = await update_table_partitioning.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioning
from dqops.client.models import PartitionIncrementalTimeWindowSpec, \
PhysicalTableName, \
TablePartitioningModel, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
call_result = update_table_partitioning.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_partitioning
from dqops.client.models import PartitionIncrementalTimeWindowSpec, \
PhysicalTableName, \
TablePartitioningModel, \
TimestampColumnsSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TablePartitioningModel(
connection_name='sample_connection',
target=PhysicalTableName(
schema_name='sample_schema',
table_name='sample_table'
),
timestamp_columns=TimestampColumnsSpec(
event_timestamp_column='col1',
ingestion_timestamp_column='col2',
partition_by_column='col3'
),
incremental_time_window=PartitionIncrementalTimeWindowSpec(
daily_partitioning_recent_days=7,
daily_partitioning_include_today=True,
monthly_partitioning_include_current_month=False
),
can_edit=True
)
call_result = await update_table_partitioning.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_profiling_checks
Updates the list of table level data quality profiling checks on an existing table.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Configuration of table level data quality profiling checks to store or an empty object to remove all data quality profiling checks on the table level (column level profiling checks are preserved). | TableProfilingCheckCategoriesSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
call_result = update_table_profiling_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
call_result = await update_table_profiling_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
call_result = update_table_profiling_checks.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks
from dqops.client.models import MinCountRule1ParametersSpec, \
TableProfilingCheckCategoriesSpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableProfilingCheckCategoriesSpec(
volume=TableVolumeProfilingChecksSpec(
profile_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
error=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
)
)
call_result = await update_table_profiling_checks.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_profiling_checks_model
Updates the data quality profiling checks from a model that contains a patch with changes.
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/profiling/model
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality profiling checks configuration. | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/profiling/model^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_table_profiling_checks_model.sync(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_table_profiling_checks_model.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
client=dqops_client,
json_body=request_body
)
update_table_scheduling_group_override
Updates the overridden schedule configuration of an existing table for a named schedule group (named schedule for checks using the same time scale).
Follow the link to see the source code on GitHub.
PUT
http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/schedulesoverride/{schedulingGroup}
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
connection_name |
Connection name | string | |
schema_name |
Schema name | string | |
table_name |
Table name | string | |
scheduling_group |
Check scheduling group (named schedule) | CheckRunScheduleGroup |
Request body
Description | Data type | Required |
---|---|---|
Table's overridden schedule configuration to store or an empty object to clear the schedule configuration on a table | CronScheduleSpec |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.tables import update_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup, \
CronScheduleSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CronScheduleSpec(
cron_expression='0 12 1 * *',
disabled=False
)
call_result = update_table_scheduling_group_override.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup, \
CronScheduleSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CronScheduleSpec(
cron_expression='0 12 1 * *',
disabled=False
)
call_result = await update_table_scheduling_group_override.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup, \
CronScheduleSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CronScheduleSpec(
cron_expression='0 12 1 * *',
disabled=False
)
call_result = update_table_scheduling_group_override.sync(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.tables import update_table_scheduling_group_override
from dqops.client.models import CheckRunScheduleGroup, \
CronScheduleSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CronScheduleSpec(
cron_expression='0 12 1 * *',
disabled=False
)
call_result = await update_table_scheduling_group_override.asyncio(
'sample_connection',
'sample_schema',
'sample_table',
CheckRunScheduleGroup.partitioned_daily,
client=dqops_client,
json_body=request_body
)