Last updated: July 22, 2025
DQOps REST API table_quality_policies operations
Operations for managing the configuration of data quality policies at a table level. Policies are the default configuration of data quality checks for tables matching a pattern.
copy_from_table_quality_policy
Creates (adds) a copy of an existing default table-level checks pattern configuration (data quality policy) under a new name.
Follow the link to see the source code on GitHub.
POST
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
target_pattern_name |
Target pattern name | string | |
source_pattern_name |
Source pattern name | string |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
call_result = copy_from_table_quality_policy.sync(
'default',
'default',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
call_result = await copy_from_table_quality_policy.asyncio(
'default',
'default',
client=dqops_client
)
create_table_quality_policy_pattern
Creates (adds) a new default table-level checks pattern (data quality policy) configuration by saving a full specification object.
Follow the link to see the source code on GitHub.
POST
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Default checks pattern model | TableQualityPolicyModel |
Usage examples
Execution
curl -X POST http://localhost:8888/api/policies/checks/table/default^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"policy_name\":\"default\",\"policy_spec\":{\"priority\":1000,\"monitoring_checks\":{\"daily\":{\"volume\":{\"daily_row_count\":{\"warning\":{\"min_count\":1}}}}}},\"can_edit\":true}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = create_table_quality_policy_pattern.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = await create_table_quality_policy_pattern.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = create_table_quality_policy_pattern.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = await create_table_quality_policy_pattern.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
create_table_quality_policy_target
Creates (adds) a new default table-level checks pattern configuration (a table-level data quality policy).
Follow the link to see the source code on GitHub.
POST
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Default checks pattern model with only the target filters | TableQualityPolicyListModel |
Usage examples
Execution
curl -X POST http://localhost:8888/api/policies/checks/table/default/target^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"policy_name\":\"default\",\"priority\":100,\"disabled\":false,\"target_table\":{\"connection\":\"dwh\",\"schema\":\"public\",\"table\":\"fact_*\"},\"can_edit\":true}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = create_table_quality_policy_target.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = await create_table_quality_policy_target.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = create_table_quality_policy_target.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = await create_table_quality_policy_target.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
delete_table_quality_policy
Deletes a default table-level checks pattern (a data quality policy at a column level).
Follow the link to see the source code on GitHub.
DELETE
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.table_quality_policies import delete_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
call_result = await delete_table_quality_policy.asyncio(
'default',
client=dqops_client
)
get_monitoring_daily_table_quality_policy
Returns UI model to show and edit the default configuration of the daily monitoring checks that are configured for a check pattern on a table level.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
curl http://localhost:8888/api/policies/checks/table/default/monitoring/daily^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_monitoring_daily_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_monitoring_daily_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_monitoring_daily_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_monitoring_daily_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_monitoring_monthly_table_quality_policy
Returns UI model to show and edit the default configuration of the monthly monitoring checks that are configured for a check pattern on a table level.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
curl http://localhost:8888/api/policies/checks/table/default/monitoring/monthly^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_monitoring_monthly_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_monitoring_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_monitoring_monthly_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_monitoring_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_partitioned_daily_table_quality_policy
Returns UI model to show and edit the default configuration of the daily partitioned checks that are configured for a check pattern on a table level.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
curl http://localhost:8888/api/policies/checks/table/default/partitioned/daily^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_partitioned_daily_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_partitioned_daily_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_partitioned_daily_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_partitioned_daily_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_partitioned_monthly_table_quality_policy
Returns UI model to show and edit the default configuration of the monthly partitioned checks that are configured for a check pattern on a table level.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
curl http://localhost:8888/api/policies/checks/table/default/partitioned/monthly^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_partitioned_monthly_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_partitioned_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_partitioned_monthly_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_partitioned_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_profiling_table_quality_policy
Returns UI model to show and edit the default configuration of the profiling checks that are configured for a check pattern on a table level.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
check_container_model |
CheckContainerModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Usage examples
Execution
curl http://localhost:8888/api/policies/checks/table/default/profiling^
-H "Accept: application/json"
Expand to see the returned result
{
"categories" : [ {
"category" : "sample_category",
"help_text" : "Sample help text",
"checks" : [ {
"check_name" : "sample_check",
"help_text" : "Sample help text",
"sensor_parameters" : [ ],
"sensor_name" : "sample_target/sample_category/table/volume/row_count",
"quality_dimension" : "sample_quality_dimension",
"supports_error_sampling" : false,
"supports_grouping" : false,
"default_severity" : "error",
"disabled" : false,
"exclude_from_kpi" : false,
"include_in_sla" : false,
"configured" : false,
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
} ]
} ],
"can_edit" : false,
"can_run_checks" : false,
"can_delete_data" : false
}
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_profiling_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_profiling_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_profiling_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_profiling_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
get_table_quality_policies
Returns a flat list of all table-level default check patterns (data quality policies) configured for this instance. Default checks are applied on tables dynamically.
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
table_quality_policy_list_model |
List[TableQualityPolicyListModel] |
Usage examples
Execution
Expand to see the returned result
[ {
"policy_name" : "default",
"priority" : 100,
"disabled" : false,
"target_table" : {
"connection" : "dwh",
"schema" : "public",
"table" : "fact_*"
},
"can_edit" : true
}, {
"policy_name" : "default",
"priority" : 100,
"disabled" : false,
"target_table" : {
"connection" : "dwh",
"schema" : "public",
"table" : "fact_*"
},
"can_edit" : true
}, {
"policy_name" : "default",
"priority" : 100,
"disabled" : false,
"target_table" : {
"connection" : "dwh",
"schema" : "public",
"table" : "fact_*"
},
"can_edit" : true
} ]
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_quality_policies.sync(
client=dqops_client
)
Expand to see the returned result
[
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
]
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_quality_policies.asyncio(
client=dqops_client
)
Expand to see the returned result
[
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
]
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_quality_policies.sync(
client=dqops_client
)
Expand to see the returned result
[
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
]
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_quality_policies.asyncio(
client=dqops_client
)
Expand to see the returned result
[
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
),
TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
]
get_table_quality_policy
Returns a default table-level checks pattern (data quality policy) definition as a full specification object
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
table_quality_policy_model |
TableQualityPolicyModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Table pattern name | string |
Usage examples
Execution
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = get_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy
dqops_client = client.Client(
'http://localhost:8888/',
raise_on_unexpected_status=True
)
call_result = await get_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_quality_policy.sync(
'default',
client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_quality_policy.asyncio(
'default',
client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
get_table_quality_policy_target
Returns a default checks pattern definition (a data quality policy)
Follow the link to see the source code on GitHub.
GET
Return value
Property name | Description | Data type |
---|---|---|
table_quality_policy_list_model |
TableQualityPolicyListModel |
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Table pattern name | string |
Usage examples
Execution
Execution
Execution
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = get_table_quality_policy_target.sync(
'default',
client=dqops_client
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token,
raise_on_unexpected_status=True
)
call_result = await get_table_quality_policy_target.asyncio(
'default',
client=dqops_client
)
update_monitoring_daily_table_quality_policy
New configuration of the default daily monitoring checks on a table level. These checks will be applied to tables.
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality daily monitoring checks configuration | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/monitoring/daily^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_monitoring_daily_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_monitoring_daily_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_monitoring_daily_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_monitoring_daily_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_monitoring_monthly_table_quality_policy
New configuration of the default monthly monitoring checks on a table level. These checks will be applied to tables.
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality monthly monitoring checks configuration | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/monitoring/monthly^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_monitoring_monthly_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_monitoring_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_monitoring_monthly_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_monitoring_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_partitioned_daily_table_quality_policy
New configuration of the default daily partitioned checks on a table level. These checks will be applied to tables.
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality daily partitioned checks configuration | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/partitioned/daily^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_partitioned_daily_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_partitioned_daily_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_partitioned_daily_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_partitioned_daily_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_partitioned_monthly_table_quality_policy
New configuration of the default monthly partitioned checks on a table level. These checks will be applied to tables.
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality monthly partitioned checks configuration | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/partitioned/monthly^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_partitioned_monthly_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_partitioned_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_partitioned_monthly_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_partitioned_monthly_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_profiling_table_quality_policy
New configuration of the default profiling checks on a table level. These checks will be applied to tables.
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Model with the changes to be applied to the data quality profiling checks configuration | CheckContainerModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/profiling^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_profiling_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_profiling_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = update_profiling_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
CheckModel, \
DefaultRuleSeverityLevel, \
FieldModel, \
QualityCategoryModel
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = CheckContainerModel(
categories=[
QualityCategoryModel(
category='sample_category',
help_text='Sample help text',
checks=[
CheckModel(
check_name='sample_check',
help_text='Sample help text',
sensor_parameters=[
],
sensor_name='sample_target/sample_category/table/volume/row_count',
quality_dimension='sample_quality_dimension',
supports_error_sampling=False,
supports_grouping=False,
standard=False,
default_check=False,
default_severity=DefaultRuleSeverityLevel.ERROR,
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
configured=False,
always_collect_error_samples=False,
do_not_schedule=False,
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
]
)
],
can_edit=False,
can_run_checks=False,
can_delete_data=False
)
call_result = await update_profiling_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_table_quality_policy
Updates an default table-level checks pattern (data quality policy) by saving a full specification object
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Default checks pattern model | TableQualityPolicyModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"policy_name\":\"default\",\"policy_spec\":{\"priority\":1000,\"monitoring_checks\":{\"daily\":{\"volume\":{\"daily_row_count\":{\"warning\":{\"min_count\":1}}}}}},\"can_edit\":true}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = update_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = await update_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = update_table_quality_policy.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
TableMonitoringCheckCategoriesSpec, \
TablePartitionedCheckCategoriesSpec, \
TableProfilingCheckCategoriesSpec, \
TableQualityPolicyModel, \
TableQualityPolicySpec, \
TableRowCountCheckSpec, \
TableVolumeProfilingChecksSpec, \
TableVolumeRowCountSensorParametersSpec, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyModel(
policy_name='default',
policy_spec=TableQualityPolicySpec(
priority=1000,
disabled=False,
target=TargetTablePatternSpec(),
profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
monitoring_checks=TableMonitoringCheckCategoriesSpec(
daily=TableDailyMonitoringCheckCategoriesSpec(
volume=TableVolumeDailyMonitoringChecksSpec(
daily_row_count=TableRowCountCheckSpec(
parameters=TableVolumeRowCountSensorParametersSpec(),
warning=MinCountRule1ParametersSpec(min_count=1),
disabled=False,
exclude_from_kpi=False,
include_in_sla=False,
always_collect_error_samples=False,
do_not_schedule=False
)
),
comparisons=TableComparisonDailyMonitoringChecksSpecMap()
)
),
partitioned_checks=TablePartitionedCheckCategoriesSpec()
),
can_edit=True
)
call_result = await update_table_quality_policy.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
update_table_quality_policy_target
Updates an default table-level checks pattern (data quality policy), changing only the target object
Follow the link to see the source code on GitHub.
PUT
Parameters of this method are described below
Property name | Description | Data type | Required |
---|---|---|---|
pattern_name |
Pattern name | string |
Request body
Description | Data type | Required |
---|---|---|
Default checks pattern model | TableQualityPolicyListModel |
Usage examples
Execution
curl -X PUT http://localhost:8888/api/policies/checks/table/default/target^
-H "Accept: application/json"^
-H "Content-Type: application/json"^
-d^
"{\"policy_name\":\"default\",\"priority\":100,\"disabled\":false,\"target_table\":{\"connection\":\"dwh\",\"schema\":\"public\",\"table\":\"fact_*\"},\"can_edit\":true}"
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = update_table_quality_policy_target.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
dqops_client = client.Client(
'http://localhost:8888/'
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = await update_table_quality_policy_target.asyncio(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = update_table_quality_policy_target.sync(
'default',
client=dqops_client,
json_body=request_body
)
Execution
from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
TargetTablePatternSpec
token = 's4mp13_4u7h_70k3n'
dqops_client = client.AuthenticatedClient(
'http://localhost:8888/',
token=token
)
request_body = TableQualityPolicyListModel(
policy_name='default',
priority=100,
disabled=False,
target_table=TargetTablePatternSpec(
connection='dwh',
schema='public',
table='fact_*'
),
can_edit=True
)
call_result = await update_table_quality_policy_target.asyncio(
'default',
client=dqops_client,
json_body=request_body
)