Skip to content

Last updated: July 22, 2025

DQOps REST API table_quality_policies operations

Operations for managing the configuration of data quality policies at a table level. Policies are the default configuration of data quality checks for tables matching a pattern.


copy_from_table_quality_policy

Creates (adds) a copy of an existing default table-level checks pattern configuration (data quality policy) under a new name.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/policies/checks/table/{targetPatternName}/copyfrom/{sourcePatternName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
target_pattern_name Target pattern name string
source_pattern_name Source pattern name string

Usage examples

Execution

curl -X POST http://localhost:8888/api/policies/checks/table/default/copyfrom/default^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = copy_from_table_quality_policy.sync(
    'default',
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await copy_from_table_quality_policy.asyncio(
    'default',
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = copy_from_table_quality_policy.sync(
    'default',
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import copy_from_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await copy_from_table_quality_policy.asyncio(
    'default',
    'default',
    client=dqops_client
)

create_table_quality_policy_pattern

Creates (adds) a new default table-level checks pattern (data quality policy) configuration by saving a full specification object.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/policies/checks/table/{patternName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Default checks pattern model TableQualityPolicyModel

Usage examples

Execution

curl -X POST http://localhost:8888/api/policies/checks/table/default^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"policy_name\":\"default\",\"policy_spec\":{\"priority\":1000,\"monitoring_checks\":{\"daily\":{\"volume\":{\"daily_row_count\":{\"warning\":{\"min_count\":1}}}}}},\"can_edit\":true}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = create_table_quality_policy_pattern.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = await create_table_quality_policy_pattern.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = create_table_quality_policy_pattern.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_pattern
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = await create_table_quality_policy_pattern.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

create_table_quality_policy_target

Creates (adds) a new default table-level checks pattern configuration (a table-level data quality policy).

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/policies/checks/table/{patternName}/target

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Default checks pattern model with only the target filters TableQualityPolicyListModel

Usage examples

Execution

curl -X POST http://localhost:8888/api/policies/checks/table/default/target^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"policy_name\":\"default\",\"priority\":100,\"disabled\":false,\"target_table\":{\"connection\":\"dwh\",\"schema\":\"public\",\"table\":\"fact_*\"},\"can_edit\":true}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = create_table_quality_policy_target.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = await create_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = create_table_quality_policy_target.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import create_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = await create_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

delete_table_quality_policy

Deletes a default table-level checks pattern (a data quality policy at a column level).

Follow the link to see the source code on GitHub.

DELETE

http://localhost:8888/api/policies/checks/table/{patternName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl -X DELETE http://localhost:8888/api/policies/checks/table/default^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import delete_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = delete_table_quality_policy.sync(
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import delete_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await delete_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import delete_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = delete_table_quality_policy.sync(
    'default',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import delete_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await delete_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)

get_monitoring_daily_table_quality_policy

Returns UI model to show and edit the default configuration of the daily monitoring checks that are configured for a check pattern on a table level.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/monitoring/daily

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/monitoring/daily^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_monitoring_daily_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_monitoring_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_monitoring_daily_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_daily_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_monitoring_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_monitoring_monthly_table_quality_policy

Returns UI model to show and edit the default configuration of the monthly monitoring checks that are configured for a check pattern on a table level.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/monitoring/monthly

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/monitoring/monthly^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_monitoring_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_monitoring_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_monitoring_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_monitoring_monthly_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_monitoring_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_partitioned_daily_table_quality_policy

Returns UI model to show and edit the default configuration of the daily partitioned checks that are configured for a check pattern on a table level.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/partitioned/daily

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/partitioned/daily^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_partitioned_daily_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_partitioned_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_partitioned_daily_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_daily_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_partitioned_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_partitioned_monthly_table_quality_policy

Returns UI model to show and edit the default configuration of the monthly partitioned checks that are configured for a check pattern on a table level.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/partitioned/monthly

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/partitioned/monthly^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_partitioned_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_partitioned_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_partitioned_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_partitioned_monthly_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_partitioned_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_profiling_table_quality_policy

Returns UI model to show and edit the default configuration of the profiling checks that are configured for a check pattern on a table level.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/profiling

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/profiling^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_profiling_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_profiling_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_profiling_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_profiling_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_profiling_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_table_quality_policies

Returns a flat list of all table-level default check patterns (data quality policies) configured for this instance. Default checks are applied on tables dynamically.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table

Return value

 Property name   Description                       Data type 
table_quality_policy_list_model List[TableQualityPolicyListModel]

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "policy_name" : "default",
  "priority" : 100,
  "disabled" : false,
  "target_table" : {
    "connection" : "dwh",
    "schema" : "public",
    "table" : "fact_*"
  },
  "can_edit" : true
}, {
  "policy_name" : "default",
  "priority" : 100,
  "disabled" : false,
  "target_table" : {
    "connection" : "dwh",
    "schema" : "public",
    "table" : "fact_*"
  },
  "can_edit" : true
}, {
  "policy_name" : "default",
  "priority" : 100,
  "disabled" : false,
  "target_table" : {
    "connection" : "dwh",
    "schema" : "public",
    "table" : "fact_*"
  },
  "can_edit" : true
} ]

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policies.sync(
    client=dqops_client
)
Expand to see the returned result
[
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    )
]

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policies.asyncio(
    client=dqops_client
)
Expand to see the returned result
[
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    )
]

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policies.sync(
    client=dqops_client
)
Expand to see the returned result
[
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    )
]

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policies

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policies.asyncio(
    client=dqops_client
)
Expand to see the returned result
[
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    ),
    TableQualityPolicyListModel(
        policy_name='default',
        priority=100,
        disabled=False,
        target_table=TargetTablePatternSpec(
            connection='dwh',
            schema='public',
            table='fact_*'
        ),
        can_edit=True
    )
]

get_table_quality_policy

Returns a default table-level checks pattern (data quality policy) definition as a full specification object

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}

Return value

 Property name   Description                       Data type 
table_quality_policy_model TableQualityPolicyModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Table pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default^
    -H "Accept: application/json"
Expand to see the returned result
{
  "policy_name" : "default",
  "policy_spec" : {
    "priority" : 1000,
    "monitoring_checks" : {
      "daily" : {
        "volume" : {
          "daily_row_count" : {
            "warning" : {
              "min_count" : 1
            }
          }
        }
      }
    }
  },
  "can_edit" : true
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policy.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policy.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

get_table_quality_policy_target

Returns a default checks pattern definition (a data quality policy)

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/policies/checks/table/{patternName}/target

Return value

 Property name   Description                       Data type 
table_quality_policy_list_model TableQualityPolicyListModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Table pattern name string

Usage examples

Execution

curl http://localhost:8888/api/policies/checks/table/default/target^
    -H "Accept: application/json"
Expand to see the returned result
{
  "policy_name" : "default",
  "priority" : 100,
  "disabled" : false,
  "target_table" : {
    "connection" : "dwh",
    "schema" : "public",
    "table" : "fact_*"
  },
  "can_edit" : true
}

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policy_target.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_table_quality_policy_target.sync(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import get_table_quality_policy_target

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client
)
Expand to see the returned result
TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

update_monitoring_daily_table_quality_policy

New configuration of the default daily monitoring checks on a table level. These checks will be applied to tables.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/monitoring/daily

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality daily monitoring checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/monitoring/daily^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_monitoring_daily_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_monitoring_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_monitoring_daily_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_monitoring_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_monitoring_monthly_table_quality_policy

New configuration of the default monthly monitoring checks on a table level. These checks will be applied to tables.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/monitoring/monthly

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality monthly monitoring checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/monitoring/monthly^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_monitoring_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_monitoring_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_monitoring_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_monitoring_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_monitoring_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_partitioned_daily_table_quality_policy

New configuration of the default daily partitioned checks on a table level. These checks will be applied to tables.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/partitioned/daily

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality daily partitioned checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/partitioned/daily^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_partitioned_daily_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_partitioned_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_partitioned_daily_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_daily_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_partitioned_daily_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_partitioned_monthly_table_quality_policy

New configuration of the default monthly partitioned checks on a table level. These checks will be applied to tables.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/partitioned/monthly

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality monthly partitioned checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/partitioned/monthly^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_partitioned_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_partitioned_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_partitioned_monthly_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_partitioned_monthly_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_partitioned_monthly_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_profiling_table_quality_policy

New configuration of the default profiling checks on a table level. These checks will be applied to tables.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/profiling

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality profiling checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/profiling^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_profiling_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_profiling_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_profiling_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_profiling_table_quality_policy
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_profiling_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_table_quality_policy

Updates an default table-level checks pattern (data quality policy) by saving a full specification object

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Default checks pattern model TableQualityPolicyModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"policy_name\":\"default\",\"policy_spec\":{\"priority\":1000,\"monitoring_checks\":{\"daily\":{\"volume\":{\"daily_row_count\":{\"warning\":{\"min_count\":1}}}}}},\"can_edit\":true}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = update_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = await update_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = update_table_quality_policy.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy
from dqops.client.models import MinCountRule1ParametersSpec, \
                                TableMonitoringCheckCategoriesSpec, \
                                TablePartitionedCheckCategoriesSpec, \
                                TableProfilingCheckCategoriesSpec, \
                                TableQualityPolicyModel, \
                                TableQualityPolicySpec, \
                                TableRowCountCheckSpec, \
                                TableVolumeProfilingChecksSpec, \
                                TableVolumeRowCountSensorParametersSpec, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyModel(
    policy_name='default',
    policy_spec=TableQualityPolicySpec(
        priority=1000,
        disabled=False,
        target=TargetTablePatternSpec(),
        profiling_checks=TableProfilingCheckCategoriesSpec(comparisons=TableComparisonProfilingChecksSpecMap()),
        monitoring_checks=TableMonitoringCheckCategoriesSpec(
            daily=TableDailyMonitoringCheckCategoriesSpec(
                volume=TableVolumeDailyMonitoringChecksSpec(
                    daily_row_count=TableRowCountCheckSpec(
                        parameters=TableVolumeRowCountSensorParametersSpec(),
                        warning=MinCountRule1ParametersSpec(min_count=1),
                        disabled=False,
                        exclude_from_kpi=False,
                        include_in_sla=False,
                        always_collect_error_samples=False,
                        do_not_schedule=False
                    )
                ),
                comparisons=TableComparisonDailyMonitoringChecksSpecMap()
            )
        ),
        partitioned_checks=TablePartitionedCheckCategoriesSpec()
    ),
    can_edit=True
)

call_result = await update_table_quality_policy.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

update_table_quality_policy_target

Updates an default table-level checks pattern (data quality policy), changing only the target object

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/policies/checks/table/{patternName}/target

Parameters of this method are described below

 Property name   Description                       Data type   Required 
pattern_name Pattern name string

Request body

 Description                       Data type   Required 
Default checks pattern model TableQualityPolicyListModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/policies/checks/table/default/target^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"policy_name\":\"default\",\"priority\":100,\"disabled\":false,\"target_table\":{\"connection\":\"dwh\",\"schema\":\"public\",\"table\":\"fact_*\"},\"can_edit\":true}"

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = update_table_quality_policy_target.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = await update_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = update_table_quality_policy_target.sync(
    'default',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.table_quality_policies import update_table_quality_policy_target
from dqops.client.models import TableQualityPolicyListModel, \
                                TargetTablePatternSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = TableQualityPolicyListModel(
    policy_name='default',
    priority=100,
    disabled=False,
    target_table=TargetTablePatternSpec(
        connection='dwh',
        schema='public',
        table='fact_*'
    ),
    can_edit=True
)

call_result = await update_table_quality_policy_target.asyncio(
    'default',
    client=dqops_client,
    json_body=request_body
)