Skip to content

Last updated: July 22, 2025

DQOps REST API incidents operations

Data quality incidents controller that supports reading and updating data quality incidents, such as changing the incident status or assigning an external ticket number.


disable_checks_for_incident

Disables all data quality checks that caused a given data quality incident.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/checks/disable

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string

Usage examples

Execution

curl -X POST http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/checks/disable^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.incidents import disable_checks_for_incident

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = disable_checks_for_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import disable_checks_for_incident

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await disable_checks_for_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import disable_checks_for_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = disable_checks_for_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import disable_checks_for_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await disable_checks_for_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

find_connection_incident_stats

Returns a list of connection names with incident statistics - the count of recent open incidents.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/incidentstat

Return value

 Property name   Description                       Data type 
incidents_per_connection_model List[IncidentsPerConnectionModel]

Usage examples

Execution

curl http://localhost:8888/api/incidentstat^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "connection" : "datalake",
  "openIncidents" : 40,
  "mostRecentFirstSeen" : "2024-06-01T11:45:22Z"
}, {
  "connection" : "datalake",
  "openIncidents" : 40,
  "mostRecentFirstSeen" : "2024-06-01T11:45:22Z"
}, {
  "connection" : "datalake",
  "openIncidents" : 40,
  "mostRecentFirstSeen" : "2024-06-01T11:45:22Z"
} ]

Execution

from dqops import client
from dqops.client.api.incidents import find_connection_incident_stats

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = find_connection_incident_stats.sync(
    client=dqops_client
)
Expand to see the returned result
[
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_connection_incident_stats

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await find_connection_incident_stats.asyncio(
    client=dqops_client
)
Expand to see the returned result
[
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_connection_incident_stats

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = find_connection_incident_stats.sync(
    client=dqops_client
)
Expand to see the returned result
[
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_connection_incident_stats

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await find_connection_incident_stats.asyncio(
    client=dqops_client
)
Expand to see the returned result
[
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    ),
    IncidentsPerConnectionModel(
        connection='datalake',
        open_incidents=40,
        most_recent_first_seen='2024-06-01T11:45:22Z'
    )
]

find_recent_incidents_on_connection

Returns a list of recent data quality incidents.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/incidents/{connectionName}

Return value

 Property name   Description                       Data type 
incident_model List[IncidentModel]

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
months Number of recent months to load, the default is 3 months long
open Returns open incidents, when the parameter is missing, the default value is true boolean
acknowledged Returns acknowledged incidents, when the parameter is missing, the default value is true boolean
resolved Returns resolved incidents, when the parameter is missing, the default value is false boolean
muted Returns muted incidents, when the parameter is missing, the default value is false boolean
severity Returns incidents with given severity level long
page Page number, the first page is 1 long
limit Page size, the default is 50 rows long
filter Optional full text search filter that supports prefix, suffix and nest*ed filter expressions string
dimension Optional filter for the data quality dimension name, case sensitive string
category Optional filter for the data quality check category name, case sensitive string
order Optional sort order, the default sort order is by the number of failed data quality checks IncidentSortOrder
direction Optional sort direction, the default sort direction is ascending SortDirection

Usage examples

Execution

curl http://localhost:8888/api/incidents/sample_connection^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "incidentId" : "c05e6544-46e5-47ed-b8c2-b72927199976",
  "connection" : "datalake",
  "year" : 2024,
  "month" : 6,
  "schema" : "public",
  "table" : "fact_sales",
  "firstSeen" : "2024-06-01T11:45:22Z",
  "qualityDimension" : "Completeness",
  "highestSeverity" : 2,
  "minimumSeverity" : 0,
  "failedChecksCount" : 5,
  "status" : "open"
}, {
  "incidentId" : "c05e6544-46e5-47ed-b8c2-b72927199976",
  "connection" : "datalake",
  "year" : 2024,
  "month" : 6,
  "schema" : "public",
  "table" : "fact_sales",
  "firstSeen" : "2024-06-01T11:45:22Z",
  "qualityDimension" : "Completeness",
  "highestSeverity" : 2,
  "minimumSeverity" : 0,
  "failedChecksCount" : 5,
  "status" : "open"
}, {
  "incidentId" : "c05e6544-46e5-47ed-b8c2-b72927199976",
  "connection" : "datalake",
  "year" : 2024,
  "month" : 6,
  "schema" : "public",
  "table" : "fact_sales",
  "firstSeen" : "2024-06-01T11:45:22Z",
  "qualityDimension" : "Completeness",
  "highestSeverity" : 2,
  "minimumSeverity" : 0,
  "failedChecksCount" : 5,
  "status" : "open"
} ]

Execution

from dqops import client
from dqops.client.api.incidents import find_recent_incidents_on_connection
from dqops.client.models import IncidentSortOrder, \
                                SortDirection

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = find_recent_incidents_on_connection.sync(
    'sample_connection',
    client=dqops_client
)
Expand to see the returned result
[
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_recent_incidents_on_connection
from dqops.client.models import IncidentSortOrder, \
                                SortDirection

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await find_recent_incidents_on_connection.asyncio(
    'sample_connection',
    client=dqops_client
)
Expand to see the returned result
[
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_recent_incidents_on_connection
from dqops.client.models import IncidentSortOrder, \
                                SortDirection

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = find_recent_incidents_on_connection.sync(
    'sample_connection',
    client=dqops_client
)
Expand to see the returned result
[
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import find_recent_incidents_on_connection
from dqops.client.models import IncidentSortOrder, \
                                SortDirection

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await find_recent_incidents_on_connection.asyncio(
    'sample_connection',
    client=dqops_client
)
Expand to see the returned result
[
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    ),
    IncidentModel(
        incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
        connection='datalake',
        year=2024,
        month=6,
        schema='public',
        table='fact_sales',
        first_seen='2024-06-01T11:45:22Z',
        quality_dimension='Completeness',
        highest_severity=2,
        minimum_severity=0,
        failed_checks_count=5,
        status=IncidentStatus.OPEN
    )
]

find_top_incidents_grouped

Finds the most recent incidents grouped by one of the incident's attribute, such as a data quality dimension, a data quality check category or the connection name.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/topincidents

Return value

 Property name   Description                       Data type 
top_incidents_model TopIncidentsModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
status Incident status to group. When this parameter is missing, the 'open' (new) incidents are grouped by default. IncidentStatus
group_by Incident grouping key. When this parameter is missing, returns incidents grouped by the data quality check category. TopIncidentGrouping
limit The result limit for each group. When this parameter is missing, returns the default limit of 10 long
days Optional filter to configure a time window before now to scan for incidents based on the incident's first seen attribute. long

Usage examples

Execution

curl http://localhost:8888/api/topincidents^
    -H "Accept: application/json"
Expand to see the returned result
{
  "grouping" : "dimension",
  "status" : "open",
  "topIncidents" : {
    "Completeness" : [ {
      "incidentId" : "c05e6544-46e5-47ed-b8c2-b72927199976",
      "connection" : "datalake",
      "year" : 2024,
      "month" : 6,
      "schema" : "public",
      "table" : "fact_sales",
      "firstSeen" : "2024-06-01T11:45:22Z",
      "qualityDimension" : "Completeness",
      "highestSeverity" : 2,
      "minimumSeverity" : 0,
      "failedChecksCount" : 5,
      "status" : "open"
    } ]
  },
  "openIncidentSeverityLevelCounts" : {
    "warningCounts" : {
      "totalCount" : 294,
      "countFromLast24h" : 3,
      "countFromLast7days" : 22,
      "currentMonthCount" : 129,
      "currentMonthDate" : "2024-02-01",
      "previousMonthCount" : 165,
      "previousMonthDate" : "2024-01-01"
    }
  }
}

Execution

from dqops import client
from dqops.client.api.incidents import find_top_incidents_grouped
from dqops.client.models import IncidentStatus, \
                                TopIncidentGrouping

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = find_top_incidents_grouped.sync(
    client=dqops_client
)
Expand to see the returned result
TopIncidentsModel(
    grouping=TopIncidentGrouping.DIMENSION,
    status=IncidentStatus.OPEN,
    top_incidents={
        'Completeness': [
            IncidentModel(
                incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
                connection='datalake',
                year=2024,
                month=6,
                schema='public',
                table='fact_sales',
                first_seen='2024-06-01T11:45:22Z',
                quality_dimension='Completeness',
                highest_severity=2,
                minimum_severity=0,
                failed_checks_count=5,
                status=IncidentStatus.OPEN
            )
        ]
    },
    open_incident_severity_level_counts=IncidentSeverityLevelCountsModel(
        warning_counts=IncidentCountsModel(
            total_count=294,
            count_from_last24h=3,
            count_from_last7days=22,
            current_month_count=129,
            current_month_date=Some date/time value: [2024-02-01],
            previous_month_count=165,
            previous_month_date=Some date/time value: [2024-01-01]
        )
    )
)

Execution

from dqops import client
from dqops.client.api.incidents import find_top_incidents_grouped
from dqops.client.models import IncidentStatus, \
                                TopIncidentGrouping

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await find_top_incidents_grouped.asyncio(
    client=dqops_client
)
Expand to see the returned result
TopIncidentsModel(
    grouping=TopIncidentGrouping.DIMENSION,
    status=IncidentStatus.OPEN,
    top_incidents={
        'Completeness': [
            IncidentModel(
                incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
                connection='datalake',
                year=2024,
                month=6,
                schema='public',
                table='fact_sales',
                first_seen='2024-06-01T11:45:22Z',
                quality_dimension='Completeness',
                highest_severity=2,
                minimum_severity=0,
                failed_checks_count=5,
                status=IncidentStatus.OPEN
            )
        ]
    },
    open_incident_severity_level_counts=IncidentSeverityLevelCountsModel(
        warning_counts=IncidentCountsModel(
            total_count=294,
            count_from_last24h=3,
            count_from_last7days=22,
            current_month_count=129,
            current_month_date=Some date/time value: [2024-02-01],
            previous_month_count=165,
            previous_month_date=Some date/time value: [2024-01-01]
        )
    )
)

Execution

from dqops import client
from dqops.client.api.incidents import find_top_incidents_grouped
from dqops.client.models import IncidentStatus, \
                                TopIncidentGrouping

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = find_top_incidents_grouped.sync(
    client=dqops_client
)
Expand to see the returned result
TopIncidentsModel(
    grouping=TopIncidentGrouping.DIMENSION,
    status=IncidentStatus.OPEN,
    top_incidents={
        'Completeness': [
            IncidentModel(
                incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
                connection='datalake',
                year=2024,
                month=6,
                schema='public',
                table='fact_sales',
                first_seen='2024-06-01T11:45:22Z',
                quality_dimension='Completeness',
                highest_severity=2,
                minimum_severity=0,
                failed_checks_count=5,
                status=IncidentStatus.OPEN
            )
        ]
    },
    open_incident_severity_level_counts=IncidentSeverityLevelCountsModel(
        warning_counts=IncidentCountsModel(
            total_count=294,
            count_from_last24h=3,
            count_from_last7days=22,
            current_month_count=129,
            current_month_date=Some date/time value: [2024-02-01],
            previous_month_count=165,
            previous_month_date=Some date/time value: [2024-01-01]
        )
    )
)

Execution

from dqops import client
from dqops.client.api.incidents import find_top_incidents_grouped
from dqops.client.models import IncidentStatus, \
                                TopIncidentGrouping

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await find_top_incidents_grouped.asyncio(
    client=dqops_client
)
Expand to see the returned result
TopIncidentsModel(
    grouping=TopIncidentGrouping.DIMENSION,
    status=IncidentStatus.OPEN,
    top_incidents={
        'Completeness': [
            IncidentModel(
                incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
                connection='datalake',
                year=2024,
                month=6,
                schema='public',
                table='fact_sales',
                first_seen='2024-06-01T11:45:22Z',
                quality_dimension='Completeness',
                highest_severity=2,
                minimum_severity=0,
                failed_checks_count=5,
                status=IncidentStatus.OPEN
            )
        ]
    },
    open_incident_severity_level_counts=IncidentSeverityLevelCountsModel(
        warning_counts=IncidentCountsModel(
            total_count=294,
            count_from_last24h=3,
            count_from_last7days=22,
            current_month_count=129,
            current_month_date=Some date/time value: [2024-02-01],
            previous_month_count=165,
            previous_month_date=Some date/time value: [2024-01-01]
        )
    )
)

get_incident

Return a single data quality incident's details.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}

Return value

 Property name   Description                       Data type 
incident_model IncidentModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string

Usage examples

Execution

curl http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident^
    -H "Accept: application/json"
Expand to see the returned result
{
  "incidentId" : "c05e6544-46e5-47ed-b8c2-b72927199976",
  "connection" : "datalake",
  "year" : 2024,
  "month" : 6,
  "schema" : "public",
  "table" : "fact_sales",
  "firstSeen" : "2024-06-01T11:45:22Z",
  "qualityDimension" : "Completeness",
  "highestSeverity" : 2,
  "minimumSeverity" : 0,
  "failedChecksCount" : 5,
  "status" : "open"
}

Execution

from dqops import client
from dqops.client.api.incidents import get_incident

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IncidentModel(
    incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
    connection='datalake',
    year=2024,
    month=6,
    schema='public',
    table='fact_sales',
    first_seen='2024-06-01T11:45:22Z',
    quality_dimension='Completeness',
    highest_severity=2,
    minimum_severity=0,
    failed_checks_count=5,
    status=IncidentStatus.OPEN
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IncidentModel(
    incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
    connection='datalake',
    year=2024,
    month=6,
    schema='public',
    table='fact_sales',
    first_seen='2024-06-01T11:45:22Z',
    quality_dimension='Completeness',
    highest_severity=2,
    minimum_severity=0,
    failed_checks_count=5,
    status=IncidentStatus.OPEN
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IncidentModel(
    incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
    connection='datalake',
    year=2024,
    month=6,
    schema='public',
    table='fact_sales',
    first_seen='2024-06-01T11:45:22Z',
    quality_dimension='Completeness',
    highest_severity=2,
    minimum_severity=0,
    failed_checks_count=5,
    status=IncidentStatus.OPEN
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IncidentModel(
    incident_id='c05e6544-46e5-47ed-b8c2-b72927199976',
    connection='datalake',
    year=2024,
    month=6,
    schema='public',
    table='fact_sales',
    first_seen='2024-06-01T11:45:22Z',
    quality_dimension='Completeness',
    highest_severity=2,
    minimum_severity=0,
    failed_checks_count=5,
    status=IncidentStatus.OPEN
)

get_incident_histogram

Generates a histogram of data quality issues for each day, returning the number of data quality issues on that day. The other histograms are by a column name and by a check name.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/histogram

Return value

 Property name   Description                       Data type 
issue_histogram_model IssueHistogramModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string
filter Optional full text search filter that supports prefix, suffix and nest*ed filter expressions string
days Optional filter for a number of recent days to read the related issues long
date Optional date filter string
column Optional column name filter string
check Optional check name filter string

Usage examples

Execution

curl http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/histogram^
    -H "Accept: application/json"
Expand to see the returned result
{
  "hasProfilingIssues" : false,
  "hasDailyMonitoringIssues" : false,
  "hasMonthlyMonitoringIssues" : false,
  "hasDailyPartitionedIssues" : false,
  "hasMonthlyPartitionedIssues" : false,
  "days" : { },
  "columns" : { },
  "checks" : { }
}

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_histogram

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_incident_histogram.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IssueHistogramModel(
    has_profiling_issues=False,
    has_daily_monitoring_issues=False,
    has_monthly_monitoring_issues=False,
    has_daily_partitioned_issues=False,
    has_monthly_partitioned_issues=False,
    days={

    },
    columns={

    },
    checks={

    }
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_histogram

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_incident_histogram.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IssueHistogramModel(
    has_profiling_issues=False,
    has_daily_monitoring_issues=False,
    has_monthly_monitoring_issues=False,
    has_daily_partitioned_issues=False,
    has_monthly_partitioned_issues=False,
    days={

    },
    columns={

    },
    checks={

    }
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_histogram

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_incident_histogram.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IssueHistogramModel(
    has_profiling_issues=False,
    has_daily_monitoring_issues=False,
    has_monthly_monitoring_issues=False,
    has_daily_partitioned_issues=False,
    has_monthly_partitioned_issues=False,
    days={

    },
    columns={

    },
    checks={

    }
)

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_histogram

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_incident_histogram.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
IssueHistogramModel(
    has_profiling_issues=False,
    has_daily_monitoring_issues=False,
    has_monthly_monitoring_issues=False,
    has_daily_partitioned_issues=False,
    has_monthly_partitioned_issues=False,
    days={

    },
    columns={

    },
    checks={

    }
)

get_incident_issues

Return a paged list of failed data quality check results that are related to an incident.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/issues

Return value

 Property name   Description                       Data type 
check_result_entry_model List[CheckResultEntryModel]

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string
page Page number, the first page is 1 long
limit Page size, the default is 50 rows long
filter Optional filter string
days Optional filter for a number of recent days to read the related issues long
date Optional filter to return data quality issues only for a given date. The date should be an ISO8601 formatted date, it is treated as the timezone of the DQOps server. string
column Optional column name filter string
check Optional check name filter string
order Optional sort order, the default sort order is by the execution date CheckResultSortOrder
direction Optional sort direction, the default sort direction is ascending SortDirection

Usage examples

Execution

curl http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/issues^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "id" : "3854372",
  "checkHash" : 0,
  "checkCategory" : "sample_category",
  "checkName" : "sample_check",
  "checkDisplayName" : "sample_target/sample_category/sample_check",
  "checkType" : "profiling",
  "actualValue" : 100.0,
  "expectedValue" : 110.0,
  "warningLowerBound" : 105.0,
  "warningUpperBound" : 115.0,
  "errorLowerBound" : 95.0,
  "errorUpperBound" : 125.0,
  "fatalLowerBound" : 85.0,
  "fatalUpperBound" : 135.0,
  "severity" : 2,
  "columnName" : "sample_column",
  "dataGroup" : "sample_data_grouping",
  "durationMs" : 142,
  "executedAt" : "2023-10-01T14:00:00Z",
  "timeGradient" : "hour",
  "timePeriod" : "2023-10-01T14:00:00",
  "includeInKpi" : true,
  "includeInSla" : true,
  "provider" : "BigQuery",
  "qualityDimension" : "sample_quality_dimension",
  "sensorName" : "sample_target/sample_category/table/volume/row_count"
}, {
  "id" : "3854372",
  "checkHash" : 0,
  "checkCategory" : "sample_category",
  "checkName" : "sample_check",
  "checkDisplayName" : "sample_target/sample_category/sample_check",
  "checkType" : "profiling",
  "actualValue" : 100.0,
  "expectedValue" : 110.0,
  "warningLowerBound" : 105.0,
  "warningUpperBound" : 115.0,
  "errorLowerBound" : 95.0,
  "errorUpperBound" : 125.0,
  "fatalLowerBound" : 85.0,
  "fatalUpperBound" : 135.0,
  "severity" : 2,
  "columnName" : "sample_column",
  "dataGroup" : "sample_data_grouping",
  "durationMs" : 142,
  "executedAt" : "2023-10-01T14:00:00Z",
  "timeGradient" : "hour",
  "timePeriod" : "2023-10-01T14:00:00",
  "includeInKpi" : true,
  "includeInSla" : true,
  "provider" : "BigQuery",
  "qualityDimension" : "sample_quality_dimension",
  "sensorName" : "sample_target/sample_category/table/volume/row_count"
}, {
  "id" : "3854372",
  "checkHash" : 0,
  "checkCategory" : "sample_category",
  "checkName" : "sample_check",
  "checkDisplayName" : "sample_target/sample_category/sample_check",
  "checkType" : "profiling",
  "actualValue" : 100.0,
  "expectedValue" : 110.0,
  "warningLowerBound" : 105.0,
  "warningUpperBound" : 115.0,
  "errorLowerBound" : 95.0,
  "errorUpperBound" : 125.0,
  "fatalLowerBound" : 85.0,
  "fatalUpperBound" : 135.0,
  "severity" : 2,
  "columnName" : "sample_column",
  "dataGroup" : "sample_data_grouping",
  "durationMs" : 142,
  "executedAt" : "2023-10-01T14:00:00Z",
  "timeGradient" : "hour",
  "timePeriod" : "2023-10-01T14:00:00",
  "includeInKpi" : true,
  "includeInSla" : true,
  "provider" : "BigQuery",
  "qualityDimension" : "sample_quality_dimension",
  "sensorName" : "sample_target/sample_category/table/volume/row_count"
} ]

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_issues
from dqops.client.models import CheckResultSortOrder, \
                                SortDirection

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_incident_issues.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
[
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_issues
from dqops.client.models import CheckResultSortOrder, \
                                SortDirection

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_incident_issues.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
[
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_issues
from dqops.client.models import CheckResultSortOrder, \
                                SortDirection

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_incident_issues.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
[
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    )
]

Execution

from dqops import client
from dqops.client.api.incidents import get_incident_issues
from dqops.client.models import CheckResultSortOrder, \
                                SortDirection

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_incident_issues.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)
Expand to see the returned result
[
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    ),
    CheckResultEntryModel(
        id='3854372',
        check_hash=0,
        check_category='sample_category',
        check_name='sample_check',
        check_display_name='sample_target/sample_category/sample_check',
        check_type=CheckType.PROFILING,
        actual_value=100.0,
        expected_value=110.0,
        warning_lower_bound=105.0,
        warning_upper_bound=115.0,
        error_lower_bound=95.0,
        error_upper_bound=125.0,
        fatal_lower_bound=85.0,
        fatal_upper_bound=135.0,
        severity=2,
        column_name='sample_column',
        data_group='sample_data_grouping',
        duration_ms=142,
        executed_at='2023-10-01T14:00:00Z',
        time_gradient=TimePeriodGradient.HOUR,
        time_period=Some date/time value: [2023-10-01T14:00],
        include_in_kpi=True,
        include_in_sla=True,
        provider='BigQuery',
        quality_dimension='sample_quality_dimension',
        sensor_name='sample_target/sample_category/table/volume/row_count'
    )
]

recalibrate_checks_for_incident

Recalibrates all data quality checks that caused a given data quality incident to generate less issues by changing the data quality rule parameters.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/checks/recalibrate

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string

Usage examples

Execution

curl -X POST http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/checks/recalibrate^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.incidents import recalibrate_checks_for_incident

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = recalibrate_checks_for_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import recalibrate_checks_for_incident

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await recalibrate_checks_for_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import recalibrate_checks_for_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = recalibrate_checks_for_incident.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import recalibrate_checks_for_incident

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await recalibrate_checks_for_incident.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

set_incident_issue_url

Changes the incident's issueUrl to a new status.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/issueurl

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string
issue_url New incident's issueUrl string

Usage examples

Execution

curl -X POST http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/issueurl^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_issue_url

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = set_incident_issue_url.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_issue_url

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await set_incident_issue_url.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_issue_url

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = set_incident_issue_url.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_issue_url

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await set_incident_issue_url.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

set_incident_status

Changes the incident's status to a new status.

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/incidents/{connectionName}/{year}/{month}/{incidentId}/status

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
year Year when the incident was first seen long
month Month when the incident was first seen long
incident_id Incident id string
status New incident status, supported values: open, acknowledged, resolved, muted IncidentStatus

Usage examples

Execution

curl -X POST http://localhost:8888/api/incidents/sample_connection/2007/10/sample_incident/status^
    -H "Accept: application/json"

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_status
from dqops.client.models import IncidentStatus

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = set_incident_status.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_status
from dqops.client.models import IncidentStatus

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await set_incident_status.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_status
from dqops.client.models import IncidentStatus

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = set_incident_status.sync(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)

Execution

from dqops import client
from dqops.client.api.incidents import set_incident_status
from dqops.client.models import IncidentStatus

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await set_incident_status.asyncio(
    'sample_connection',
    2007,
    10,
    'sample_incident',
    client=dqops_client
)