Skip to content

Last updated: July 22, 2025

DQOps REST API columns operations

Operations related to manage the metadata of columns, and managing the configuration of column-level data quality checks.


create_column

Creates a new column (adds a column metadata to the table)

Follow the link to see the source code on GitHub.

POST

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Column specification ColumnSpec

Usage examples

Execution

curl -X POST http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"type_snapshot\":{\"column_type\":\"string\",\"nullable\":false,\"length\":256},\"profiling_checks\":{\"nulls\":{\"profile_nulls_count\":{\"error\":{\"max_count\":0}}}}}"

Execution

from dqops import client
from dqops.client.api.columns import create_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = create_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import create_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = await create_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import create_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = create_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import create_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = await create_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

delete_column

Deletes a column from the table

Follow the link to see the source code on GitHub.

DELETE

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}

Return value

 Property name   Description                       Data type 
dqo_queue_job_id DqoQueueJobId

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl -X DELETE http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column^
    -H "Accept: application/json"
Expand to see the returned result
{
  "jobId" : 123456789,
  "createdAt" : "2007-10-11T13:42:00Z"
}

Execution

from dqops import client
from dqops.client.api.columns import delete_column

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = delete_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
DqoQueueJobId(
    job_id=123456789,
    created_at='2007-10-11T13:42:00Z'
)

Execution

from dqops import client
from dqops.client.api.columns import delete_column

dqops_client = client.Client(
    'http://localhost:8888/'
)

call_result = await delete_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
DqoQueueJobId(
    job_id=123456789,
    created_at='2007-10-11T13:42:00Z'
)

Execution

from dqops import client
from dqops.client.api.columns import delete_column

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = delete_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
DqoQueueJobId(
    job_id=123456789,
    created_at='2007-10-11T13:42:00Z'
)

Execution

from dqops import client
from dqops.client.api.columns import delete_column

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

call_result = await delete_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
DqoQueueJobId(
    job_id=123456789,
    created_at='2007-10-11T13:42:00Z'
)

get_column

Returns the full column specification

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}

Return value

 Property name   Description                       Data type 
column_model ColumnModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column^
    -H "Accept: application/json"
Expand to see the returned result
{
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "spec" : {
    "type_snapshot" : {
      "column_type" : "string",
      "nullable" : false,
      "length" : 256
    },
    "profiling_checks" : {
      "nulls" : {
        "profile_nulls_count" : {
          "error" : {
            "max_count" : 0
          }
        }
      }
    }
  },
  "can_edit" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    spec=ColumnSpec(
        disabled=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        id=False,
        profiling_checks=ColumnProfilingCheckCategoriesSpec(
            nulls=ColumnNullsProfilingChecksSpec(
                profile_nulls_count=ColumnNullsCountCheckSpec(
                    parameters=ColumnNullsNullsCountSensorParametersSpec(),
                    error=MaxCountRule0ErrorParametersSpec(max_count=0),
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False
                )
            ),
            comparisons=ColumnComparisonProfilingChecksSpecMap()
        ),
        advanced_properties={

        }
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    spec=ColumnSpec(
        disabled=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        id=False,
        profiling_checks=ColumnProfilingCheckCategoriesSpec(
            nulls=ColumnNullsProfilingChecksSpec(
                profile_nulls_count=ColumnNullsCountCheckSpec(
                    parameters=ColumnNullsNullsCountSensorParametersSpec(),
                    error=MaxCountRule0ErrorParametersSpec(max_count=0),
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False
                )
            ),
            comparisons=ColumnComparisonProfilingChecksSpecMap()
        ),
        advanced_properties={

        }
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    spec=ColumnSpec(
        disabled=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        id=False,
        profiling_checks=ColumnProfilingCheckCategoriesSpec(
            nulls=ColumnNullsProfilingChecksSpec(
                profile_nulls_count=ColumnNullsCountCheckSpec(
                    parameters=ColumnNullsNullsCountSensorParametersSpec(),
                    error=MaxCountRule0ErrorParametersSpec(max_count=0),
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False
                )
            ),
            comparisons=ColumnComparisonProfilingChecksSpecMap()
        ),
        advanced_properties={

        }
    ),
    can_edit=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    spec=ColumnSpec(
        disabled=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        id=False,
        profiling_checks=ColumnProfilingCheckCategoriesSpec(
            nulls=ColumnNullsProfilingChecksSpec(
                profile_nulls_count=ColumnNullsCountCheckSpec(
                    parameters=ColumnNullsNullsCountSensorParametersSpec(),
                    error=MaxCountRule0ErrorParametersSpec(max_count=0),
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False
                )
            ),
            comparisons=ColumnComparisonProfilingChecksSpecMap()
        ),
        advanced_properties={

        }
    ),
    can_edit=True
)

get_column_basic

Returns the column specification

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/basic

Return value

 Property name   Description                       Data type 
column_list_model ColumnListModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/basic^
    -H "Accept: application/json"
Expand to see the returned result
{
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "has_any_configured_checks" : true,
  "has_any_configured_profiling_checks" : true,
  "type_snapshot" : {
    "column_type" : "string",
    "nullable" : false,
    "length" : 256
  },
  "advanced_properties" : { },
  "can_edit" : false,
  "can_collect_statistics" : true,
  "can_run_checks" : true,
  "can_delete_data" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_basic

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_basic.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_basic

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_basic.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_basic

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_basic.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_basic

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_basic.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

get_column_comments

Return the list of comments assigned to a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/comments

Return value

 Property name   Description                       Data type 
comment_spec List[CommentSpec]

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/comments^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "date" : "2007-12-03T10:15:30",
  "comment_by" : "sample_user",
  "comment" : "Sample comment"
}, {
  "date" : "2007-12-03T10:15:30",
  "comment_by" : "sample_user",
  "comment" : "Sample comment"
}, {
  "date" : "2007-12-03T10:15:30",
  "comment_by" : "sample_user",
  "comment" : "Sample comment"
} ]

Execution

from dqops import client
from dqops.client.api.columns import get_column_comments

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_comments.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_comments

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_comments.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_comments

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_comments.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_comments

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_comments.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

get_column_labels

Return the list of labels assigned to a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/labels

Return value

 Property name   Description                       Data type 
string List[string]

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/labels^
    -H "Accept: application/json"
Expand to see the returned result
[ "sampleString_1", "sampleString_2", "sampleString_3" ]

Execution

from dqops import client
from dqops.client.api.columns import get_column_labels

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_labels.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_labels

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_labels.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_labels

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_labels.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

Execution

from dqops import client
from dqops.client.api.columns import get_column_labels

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_labels.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
[
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

get_column_monitoring_checks_basic_model

Return a simplistic UI friendly model of column level data quality monitoring on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/{timeScale}/model/basic

Return value

 Property name   Description                       Data type 
check_container_list_model CheckContainerListModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily/model/basic^
    -H "Accept: application/json"
Expand to see the returned result
{
  "checks" : [ {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  } ],
  "can_edit" : false,
  "can_run_checks" : true,
  "can_delete_data" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_basic_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

get_column_monitoring_checks_daily

Return the configuration of daily column level data quality monitoring on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/daily

Return value

 Property name   Description                       Data type 
column_daily_monitoring_check_categories_spec ColumnDailyMonitoringCheckCategoriesSpec

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily^
    -H "Accept: application/json"
Expand to see the returned result
{
  "nulls" : {
    "daily_nulls_count" : {
      "error" : {
        "max_count" : 0
      }
    }
  }
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_daily

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_daily

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_daily

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_daily

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

get_column_monitoring_checks_model

Return a UI friendly model of column level data quality monitoring on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/{timeScale}/model

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily/model^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_monitoring_checks_model_filter

Return a UI friendly model of column level data quality monitoring on a column filtered by category and check name

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/{timeScale}/model/filter/{checkCategory}/{checkName}

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale
check_category Check category string
check_name Check name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily/model/filter/sample_category/sample_check^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_model_filter
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_monitoring_checks_monthly

Return the configuration of monthly column level data quality monitoring on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/monthly

Return value

 Property name   Description                       Data type 
column_monthly_monitoring_check_categories_spec ColumnMonthlyMonitoringCheckCategoriesSpec

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/monthly^
    -H "Accept: application/json"
Expand to see the returned result
{
  "nulls" : {
    "monthly_nulls_count" : {
      "error" : {
        "max_count" : 0
      }
    }
  }
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_monthly

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_monthly

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_monthly

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_monitoring_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_monitoring_checks_monthly

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_monitoring_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

get_column_partitioned_checks_basic_model

Return a simplistic UI friendly model of column level data quality partitioned checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/{timeScale}/model/basic

Return value

 Property name   Description                       Data type 
check_container_list_model CheckContainerListModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily/model/basic^
    -H "Accept: application/json"
Expand to see the returned result
{
  "checks" : [ {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  } ],
  "can_edit" : false,
  "can_run_checks" : true,
  "can_delete_data" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_basic_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

get_column_partitioned_checks_daily

Return the configuration of daily column level data quality partitioned checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/daily

Return value

 Property name   Description                       Data type 
column_daily_partitioned_check_categories_spec ColumnDailyPartitionedCheckCategoriesSpec

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily^
    -H "Accept: application/json"
Expand to see the returned result
{
  "nulls" : {
    "daily_partition_nulls_count" : {
      "error" : {
        "max_count" : 0
      }
    }
  }
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_daily

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_daily

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_daily

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_daily

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

get_column_partitioned_checks_model

Return a UI friendly model of column level data quality partitioned checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/{timeScale}/model

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily/model^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_partitioned_checks_model_filter

Return a UI friendly model of column level data quality partitioned checks on a column, filtered by category and check name

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/{timeScale}/model/filter/{checkCategory}/{checkName}

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale
check_category Check category string
check_name Check name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily/model/filter/sample_category/sample_check^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_model_filter
from dqops.client.models import CheckTimeScale

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_partitioned_checks_monthly

Return the configuration of monthly column level data quality partitioned checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/monthly

Return value

 Property name   Description                       Data type 
column_monthly_partitioned_check_categories_spec ColumnMonthlyPartitionedCheckCategoriesSpec

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/monthly^
    -H "Accept: application/json"
Expand to see the returned result
{
  "nulls" : {
    "monthly_partition_nulls_count" : {
      "error" : {
        "max_count" : 0
      }
    }
  }
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_monthly

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_monthly

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_monthly

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_partitioned_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_partitioned_checks_monthly

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_partitioned_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

get_column_profiling_checks

Return the configuration of column level data quality profiling checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling

Return value

 Property name   Description                       Data type 
column_profiling_check_categories_spec ColumnProfilingCheckCategoriesSpec

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling^
    -H "Accept: application/json"
Expand to see the returned result
{
  "nulls" : {
    "profile_nulls_count" : {
      "error" : {
        "max_count" : 0
      }
    }
  }
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

get_column_profiling_checks_basic_model

Return a simplistic UI friendly model of column level data quality profiling checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling/model/basic

Return value

 Property name   Description                       Data type 
check_container_list_model CheckContainerListModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling/model/basic^
    -H "Accept: application/json"
Expand to see the returned result
{
  "checks" : [ {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_1",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_2",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_1",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  }, {
    "check_category" : "sample_category_2",
    "check_name" : "sample_check_3",
    "help_text" : "Sample help text",
    "configured" : true
  } ],
  "can_edit" : false,
  "can_run_checks" : true,
  "can_delete_data" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_basic_model

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_basic_model

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_basic_model

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_basic_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_basic_model

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_basic_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerListModel(
    checks=[
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_1',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_2',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_1',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        ),
        CheckListModel(
            check_category='sample_category_2',
            check_name='sample_check_3',
            help_text='Sample help text',
            configured=True
        )
    ],
    can_edit=False,
    can_run_checks=True,
    can_delete_data=True
)

get_column_profiling_checks_model

Return a UI friendly model of data quality profiling checks on a column

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling/model

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling/model^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_profiling_checks_model_filter

Return a UI friendly model of data quality profiling checks on a column filtered by category and check name

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling/model/filter/{checkCategory}/{checkName}

Return value

 Property name   Description                       Data type 
check_container_model CheckContainerModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
check_category Check category string
check_name Check name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling/model/filter/sample_category/sample_check^
    -H "Accept: application/json"
Expand to see the returned result
{
  "categories" : [ {
    "category" : "sample_category",
    "help_text" : "Sample help text",
    "checks" : [ {
      "check_name" : "sample_check",
      "help_text" : "Sample help text",
      "sensor_parameters" : [ ],
      "sensor_name" : "sample_target/sample_category/table/volume/row_count",
      "quality_dimension" : "sample_quality_dimension",
      "supports_error_sampling" : false,
      "supports_grouping" : false,
      "default_severity" : "error",
      "disabled" : false,
      "exclude_from_kpi" : false,
      "include_in_sla" : false,
      "configured" : false,
      "can_edit" : false,
      "can_run_checks" : false,
      "can_delete_data" : false
    } ]
  } ],
  "can_edit" : false,
  "can_run_checks" : false,
  "can_delete_data" : false
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model_filter

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model_filter

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model_filter

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_profiling_checks_model_filter.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_profiling_checks_model_filter

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_profiling_checks_model_filter.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    'sample_category',
    'sample_check',
    client=dqops_client
)
Expand to see the returned result
CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

get_column_statistics

Returns the column specification with the metrics captured by the most recent statistics collection.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/statistics

Return value

 Property name   Description                       Data type 
column_statistics_model ColumnStatisticsModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/statistics^
    -H "Accept: application/json"
Expand to see the returned result
{
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "has_any_configured_checks" : true,
  "type_snapshot" : {
    "column_type" : "string",
    "nullable" : false,
    "length" : 256
  },
  "statistics" : [ {
    "category" : "sample_category",
    "collector" : "sample_collector",
    "sensorName" : "table/volume/row_count",
    "resultDataType" : "integer",
    "result" : 4372,
    "collectedAt" : "2007-10-11T18:00:00",
    "executedAt" : "2007-10-11T18:00:00Z"
  }, {
    "category" : "sample_category",
    "collector" : "sample_collector",
    "sensorName" : "table/volume/row_count",
    "resultDataType" : "integer",
    "result" : 9624,
    "collectedAt" : "2007-10-12T18:00:00",
    "executedAt" : "2007-10-11T18:00:00Z"
  }, {
    "category" : "sample_category",
    "collector" : "sample_collector",
    "sensorName" : "table/volume/row_count",
    "resultDataType" : "integer",
    "result" : 1575,
    "collectedAt" : "2007-10-13T18:00:00",
    "executedAt" : "2007-10-11T18:00:00Z"
  }, {
    "category" : "sample_category",
    "collector" : "sample_collector",
    "sensorName" : "table/volume/row_count",
    "resultDataType" : "integer",
    "result" : 5099,
    "collectedAt" : "2007-10-14T18:00:00",
    "executedAt" : "2007-10-11T18:00:00Z"
  }, {
    "category" : "sample_category",
    "collector" : "sample_collector",
    "sensorName" : "table/volume/row_count",
    "resultDataType" : "integer",
    "result" : 9922,
    "collectedAt" : "2007-10-15T18:00:00",
    "executedAt" : "2007-10-11T18:00:00Z"
  } ],
  "collect_column_statistics_job_template" : {
    "connection" : "sample_connection",
    "fullTableName" : "sample_schema.sample_table",
    "enabled" : true,
    "columnNames" : [ "sample_column" ]
  },
  "can_collect_statistics" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_column_statistics

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_column_statistics.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    has_any_configured_checks=True,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    statistics=[
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=4372,
            collected_at=Some date/time value: [2007-10-11T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9624,
            collected_at=Some date/time value: [2007-10-12T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=1575,
            collected_at=Some date/time value: [2007-10-13T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=5099,
            collected_at=Some date/time value: [2007-10-14T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9922,
            collected_at=Some date/time value: [2007-10-15T18:00],
            executed_at='2007-10-11T18:00:00Z'
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_statistics

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_column_statistics.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    has_any_configured_checks=True,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    statistics=[
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=4372,
            collected_at=Some date/time value: [2007-10-11T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9624,
            collected_at=Some date/time value: [2007-10-12T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=1575,
            collected_at=Some date/time value: [2007-10-13T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=5099,
            collected_at=Some date/time value: [2007-10-14T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9922,
            collected_at=Some date/time value: [2007-10-15T18:00],
            executed_at='2007-10-11T18:00:00Z'
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_statistics

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_column_statistics.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    has_any_configured_checks=True,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    statistics=[
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=4372,
            collected_at=Some date/time value: [2007-10-11T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9624,
            collected_at=Some date/time value: [2007-10-12T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=1575,
            collected_at=Some date/time value: [2007-10-13T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=5099,
            collected_at=Some date/time value: [2007-10-14T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9922,
            collected_at=Some date/time value: [2007-10-15T18:00],
            executed_at='2007-10-11T18:00:00Z'
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_column_statistics

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_column_statistics.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client
)
Expand to see the returned result
ColumnStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    has_any_configured_checks=True,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    statistics=[
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=4372,
            collected_at=Some date/time value: [2007-10-11T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9624,
            collected_at=Some date/time value: [2007-10-12T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=1575,
            collected_at=Some date/time value: [2007-10-13T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=5099,
            collected_at=Some date/time value: [2007-10-14T18:00],
            executed_at='2007-10-11T18:00:00Z'
        ),
        StatisticsMetricModel(
            category='sample_category',
            collector='sample_collector',
            sensor_name='table/volume/row_count',
            result_data_type=StatisticsResultDataType.INTEGER,
            result=9922,
            collected_at=Some date/time value: [2007-10-15T18:00],
            executed_at='2007-10-11T18:00:00Z'
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

get_columns

Returns a list of columns inside a table

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns

Return value

 Property name   Description                       Data type 
column_list_model List[ColumnListModel]

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
data_quality_status Optional parameter to opt out from retrieving the most recent data quality status for the column. By default, DQOps calculates the data quality status from the data quality results. boolean
check_type Optional parameter for the check type, when provided, returns the results for data quality dimensions for the data quality checks of that type CheckType

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns^
    -H "Accept: application/json"
Expand to see the returned result
[ {
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "has_any_configured_checks" : true,
  "has_any_configured_profiling_checks" : true,
  "type_snapshot" : {
    "column_type" : "string",
    "nullable" : false,
    "length" : 256
  },
  "advanced_properties" : { },
  "can_edit" : false,
  "can_collect_statistics" : true,
  "can_run_checks" : true,
  "can_delete_data" : true
}, {
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "has_any_configured_checks" : true,
  "has_any_configured_profiling_checks" : true,
  "type_snapshot" : {
    "column_type" : "string",
    "nullable" : false,
    "length" : 256
  },
  "advanced_properties" : { },
  "can_edit" : false,
  "can_collect_statistics" : true,
  "can_run_checks" : true,
  "can_delete_data" : true
}, {
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_name" : "sample_column",
  "has_any_configured_checks" : true,
  "has_any_configured_profiling_checks" : true,
  "type_snapshot" : {
    "column_type" : "string",
    "nullable" : false,
    "length" : 256
  },
  "advanced_properties" : { },
  "can_edit" : false,
  "can_collect_statistics" : true,
  "can_run_checks" : true,
  "can_delete_data" : true
} ]

Execution

from dqops import client
from dqops.client.api.columns import get_columns
from dqops.client.models import CheckType

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_columns.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
[
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_columns
from dqops.client.models import CheckType

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_columns.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
[
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_columns
from dqops.client.models import CheckType

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_columns.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
[
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    )
]

Execution

from dqops import client
from dqops.client.api.columns import get_columns
from dqops.client.models import CheckType

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_columns.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
[
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    ),
    ColumnListModel(
        connection_name='sample_connection',
        table=PhysicalTableName(
            schema_name='sample_schema',
            table_name='sample_table'
        ),
        column_name='sample_column',
        disabled=False,
        id=False,
        has_any_configured_checks=True,
        has_any_configured_profiling_checks=True,
        has_any_configured_monitoring_checks=False,
        has_any_configured_partition_checks=False,
        type_snapshot=ColumnTypeSnapshotSpec(
            column_type='string',
            nullable=False,
            length=256
        ),
        advanced_properties={

        },
        can_edit=False,
        can_collect_statistics=True,
        can_run_checks=True,
        can_delete_data=True
    )
]

get_columns_statistics

Returns a list of columns inside a table with the metrics captured by the most recent statistics collection.

Follow the link to see the source code on GitHub.

GET

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/statistics

Return value

 Property name   Description                       Data type 
table_columns_statistics_model TableColumnsStatisticsModel

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string

Usage examples

Execution

curl http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/statistics^
    -H "Accept: application/json"
Expand to see the returned result
{
  "connection_name" : "sample_connection",
  "table" : {
    "schema_name" : "sample_schema",
    "table_name" : "sample_table"
  },
  "column_statistics" : [ {
    "connection_name" : "sample_connection",
    "table" : {
      "schema_name" : "sample_schema",
      "table_name" : "sample_table"
    },
    "column_name" : "sample_column",
    "has_any_configured_checks" : true,
    "type_snapshot" : {
      "column_type" : "string",
      "nullable" : false,
      "length" : 256
    },
    "statistics" : [ {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 4372,
      "collectedAt" : "2007-10-11T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 9624,
      "collectedAt" : "2007-10-12T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 1575,
      "collectedAt" : "2007-10-13T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 5099,
      "collectedAt" : "2007-10-14T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 9922,
      "collectedAt" : "2007-10-15T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    } ],
    "collect_column_statistics_job_template" : {
      "connection" : "sample_connection",
      "fullTableName" : "sample_schema.sample_table",
      "enabled" : true,
      "columnNames" : [ "sample_column" ]
    },
    "can_collect_statistics" : true
  }, {
    "connection_name" : "sample_connection",
    "table" : {
      "schema_name" : "sample_schema",
      "table_name" : "sample_table"
    },
    "column_name" : "sample_column_1",
    "has_any_configured_checks" : true,
    "type_snapshot" : {
      "column_type" : "string",
      "nullable" : false,
      "length" : 256
    },
    "statistics" : [ {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 4372,
      "collectedAt" : "2007-10-11T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 9624,
      "collectedAt" : "2007-10-12T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 1575,
      "collectedAt" : "2007-10-13T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 5099,
      "collectedAt" : "2007-10-14T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    }, {
      "category" : "sample_category",
      "collector" : "sample_collector",
      "sensorName" : "table/volume/row_count",
      "resultDataType" : "integer",
      "result" : 9922,
      "collectedAt" : "2007-10-15T18:00:00",
      "executedAt" : "2007-10-11T18:00:00Z"
    } ],
    "collect_column_statistics_job_template" : {
      "connection" : "sample_connection",
      "fullTableName" : "sample_schema.sample_table",
      "enabled" : true,
      "columnNames" : [ "sample_column" ]
    },
    "can_collect_statistics" : true
  } ],
  "collect_column_statistics_job_template" : {
    "connection" : "sample_connection",
    "fullTableName" : "sample_schema.sample_table",
    "enabled" : true,
    "columnNames" : [ "sample_column" ],
    "collectorCategory" : "sample_category"
  },
  "can_collect_statistics" : true
}

Execution

from dqops import client
from dqops.client.api.columns import get_columns_statistics

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = get_columns_statistics.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
TableColumnsStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_statistics=[
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        ),
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column_1',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        collector_category='sample_category',
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_columns_statistics

dqops_client = client.Client(
    'http://localhost:8888/',
    raise_on_unexpected_status=True
)

call_result = await get_columns_statistics.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
TableColumnsStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_statistics=[
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        ),
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column_1',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        collector_category='sample_category',
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_columns_statistics

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = get_columns_statistics.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
TableColumnsStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_statistics=[
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        ),
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column_1',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        collector_category='sample_category',
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

Execution

from dqops import client
from dqops.client.api.columns import get_columns_statistics

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token,
    raise_on_unexpected_status=True
)

call_result = await get_columns_statistics.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    client=dqops_client
)
Expand to see the returned result
TableColumnsStatisticsModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_statistics=[
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        ),
        ColumnStatisticsModel(
            connection_name='sample_connection',
            table=PhysicalTableName(
                schema_name='sample_schema',
                table_name='sample_table'
            ),
            column_name='sample_column_1',
            disabled=False,
            has_any_configured_checks=True,
            type_snapshot=ColumnTypeSnapshotSpec(
                column_type='string',
                nullable=False,
                length=256
            ),
            statistics=[
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=4372,
                    collected_at=Some date/time value: [2007-10-11T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9624,
                    collected_at=Some date/time value: [2007-10-12T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=1575,
                    collected_at=Some date/time value: [2007-10-13T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=5099,
                    collected_at=Some date/time value: [2007-10-14T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                ),
                StatisticsMetricModel(
                    category='sample_category',
                    collector='sample_collector',
                    sensor_name='table/volume/row_count',
                    result_data_type=StatisticsResultDataType.INTEGER,
                    result=9922,
                    collected_at=Some date/time value: [2007-10-15T18:00],
                    executed_at='2007-10-11T18:00:00Z'
                )
            ],
            collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
                column_names=[
                    'sample_column'
                ],
                connection='sample_connection',
                full_table_name='sample_schema.sample_table',
                enabled=True
            ),
            can_collect_statistics=True
        )
    ],
    collect_column_statistics_job_template=StatisticsCollectorSearchFilters(
        column_names=[
            'sample_column'
        ],
        collector_category='sample_category',
        connection='sample_connection',
        full_table_name='sample_schema.sample_table',
        enabled=True
    ),
    can_collect_statistics=True
)

update_column

Updates an existing column specification, changing all the fields (even the column level data quality checks).

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Column specification ColumnSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"type_snapshot\":{\"column_type\":\"string\",\"nullable\":false,\"length\":256},\"profiling_checks\":{\"nulls\":{\"profile_nulls_count\":{\"error\":{\"max_count\":0}}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = update_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = await update_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = update_column.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                ColumnSpec, \
                                ColumnTypeSnapshotSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnSpec(
    disabled=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    id=False,
    profiling_checks=ColumnProfilingCheckCategoriesSpec(
        nulls=ColumnNullsProfilingChecksSpec(
            profile_nulls_count=ColumnNullsCountCheckSpec(
                parameters=ColumnNullsNullsCountSensorParametersSpec(),
                error=MaxCountRule0ErrorParametersSpec(max_count=0),
                disabled=False,
                exclude_from_kpi=False,
                include_in_sla=False,
                always_collect_error_samples=False,
                do_not_schedule=False
            )
        ),
        comparisons=ColumnComparisonProfilingChecksSpecMap()
    ),
    advanced_properties={

    }
)

call_result = await update_column.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_basic

Updates an existing column, changing only the basic information like the expected data type (the data type snapshot).

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/basic

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Basic column information to store ColumnListModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/basic^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"connection_name\":\"sample_connection\",\"table\":{\"schema_name\":\"sample_schema\",\"table_name\":\"sample_table\"},\"column_name\":\"sample_column\",\"has_any_configured_checks\":true,\"has_any_configured_profiling_checks\":true,\"type_snapshot\":{\"column_type\":\"string\",\"nullable\":false,\"length\":256},\"advanced_properties\":{},\"can_edit\":false,\"can_collect_statistics\":true,\"can_run_checks\":true,\"can_delete_data\":true}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_basic
from dqops.client.models import ColumnListModel, \
                                ColumnTypeSnapshotSpec, \
                                PhysicalTableName

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

call_result = update_column_basic.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_basic
from dqops.client.models import ColumnListModel, \
                                ColumnTypeSnapshotSpec, \
                                PhysicalTableName

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

call_result = await update_column_basic.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_basic
from dqops.client.models import ColumnListModel, \
                                ColumnTypeSnapshotSpec, \
                                PhysicalTableName

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

call_result = update_column_basic.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_basic
from dqops.client.models import ColumnListModel, \
                                ColumnTypeSnapshotSpec, \
                                PhysicalTableName

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnListModel(
    connection_name='sample_connection',
    table=PhysicalTableName(
        schema_name='sample_schema',
        table_name='sample_table'
    ),
    column_name='sample_column',
    disabled=False,
    id=False,
    has_any_configured_checks=True,
    has_any_configured_profiling_checks=True,
    has_any_configured_monitoring_checks=False,
    has_any_configured_partition_checks=False,
    type_snapshot=ColumnTypeSnapshotSpec(
        column_type='string',
        nullable=False,
        length=256
    ),
    advanced_properties={

    },
    can_edit=False,
    can_collect_statistics=True,
    can_run_checks=True,
    can_delete_data=True
)

call_result = await update_column_basic.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_comments

Updates the list of comments assigned to a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/comments

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
List of comments to stored (replaced) on the column or an empty object to clear the list of assigned comments on the column List[CommentSpec]

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/comments^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "[{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"},{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"},{\"date\":\"2007-12-03T10:15:30\",\"comment_by\":\"sample_user\",\"comment\":\"Sample comment\"}]"

Execution

from dqops import client
from dqops.client.api.columns import update_column_comments
from dqops.client.models import CommentSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = [
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

call_result = update_column_comments.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_comments
from dqops.client.models import CommentSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = [
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

call_result = await update_column_comments.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_comments
from dqops.client.models import CommentSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = [
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

call_result = update_column_comments.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_comments
from dqops.client.models import CommentSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = [
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    ),
    CommentSpec(
        date=Some date/time value: [2007-12-03T10:15:30],
        comment_by='sample_user',
        comment='Sample comment'
    )
]

call_result = await update_column_comments.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_labels

Updates the list of labels assigned to a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/labels

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
List of labels to stored (replaced) on the column or an empty object to clear the list of assigned labels on the column List[string]

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/labels^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "[\"sampleString_1\",\"sampleString_2\",\"sampleString_3\"]"

Execution

from dqops import client
from dqops.client.api.columns import update_column_labels

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = [
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

call_result = update_column_labels.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_labels

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = [
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

call_result = await update_column_labels.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_labels

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = [
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

call_result = update_column_labels.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_labels

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = [
    'sampleString_1',
    'sampleString_2',
    'sampleString_3'
]

call_result = await update_column_labels.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_monitoring_checks_daily

Updates configuration of daily column level data quality monitoring on a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/daily

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Configuration of daily column level data quality monitoring to configure on a column or an empty object to clear the list of assigned daily data quality monitoring on the column ColumnDailyMonitoringCheckCategoriesSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"nulls\":{\"daily_nulls_count\":{\"error\":{\"max_count\":0}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_daily
from dqops.client.models import ColumnComparisonDailyMonitoringChecksSpecMap, \
                                ColumnDailyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

call_result = update_column_monitoring_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_daily
from dqops.client.models import ColumnComparisonDailyMonitoringChecksSpecMap, \
                                ColumnDailyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

call_result = await update_column_monitoring_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_daily
from dqops.client.models import ColumnComparisonDailyMonitoringChecksSpecMap, \
                                ColumnDailyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

call_result = update_column_monitoring_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_daily
from dqops.client.models import ColumnComparisonDailyMonitoringChecksSpecMap, \
                                ColumnDailyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnDailyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsDailyMonitoringChecksSpec(
        daily_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyMonitoringChecksSpecMap()
)

call_result = await update_column_monitoring_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_monitoring_checks_model

Updates configuration of column level data quality monitoring on a column, for a given time scale, from a UI friendly model.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/{timeScale}/model

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality monitoring configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/daily/model^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_monitoring_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_monitoring_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_monitoring_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_monitoring_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

update_column_monitoring_checks_monthly

Updates configuration of monthly column level data quality monitoring checks on a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/monitoring/monthly

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Configuration of monthly column level data quality monitoring to configure on a column or an empty object to clear the list of assigned monthly data quality monitoring on the column ColumnMonthlyMonitoringCheckCategoriesSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/monitoring/monthly^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"nulls\":{\"monthly_nulls_count\":{\"error\":{\"max_count\":0}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyMonitoringChecksSpecMap, \
                                ColumnMonthlyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

call_result = update_column_monitoring_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyMonitoringChecksSpecMap, \
                                ColumnMonthlyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

call_result = await update_column_monitoring_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyMonitoringChecksSpecMap, \
                                ColumnMonthlyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

call_result = update_column_monitoring_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_monitoring_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyMonitoringChecksSpecMap, \
                                ColumnMonthlyMonitoringCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyMonitoringChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnMonthlyMonitoringCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyMonitoringChecksSpec(
        monthly_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyMonitoringChecksSpecMap()
)

call_result = await update_column_monitoring_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_partitioned_checks_daily

Updates configuration of daily column level data quality partitioned checks on a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/daily

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Configuration of daily column level data quality partitioned checks to configure on a column or an empty object to clear the list of assigned data quality partitioned checks on the column ColumnDailyPartitionedCheckCategoriesSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"nulls\":{\"daily_partition_nulls_count\":{\"error\":{\"max_count\":0}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_daily
from dqops.client.models import ColumnComparisonDailyPartitionedChecksSpecMap, \
                                ColumnDailyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

call_result = update_column_partitioned_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_daily
from dqops.client.models import ColumnComparisonDailyPartitionedChecksSpecMap, \
                                ColumnDailyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

call_result = await update_column_partitioned_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_daily
from dqops.client.models import ColumnComparisonDailyPartitionedChecksSpecMap, \
                                ColumnDailyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

call_result = update_column_partitioned_checks_daily.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_daily
from dqops.client.models import ColumnComparisonDailyPartitionedChecksSpecMap, \
                                ColumnDailyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsDailyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnDailyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsDailyPartitionedChecksSpec(
        daily_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonDailyPartitionedChecksSpecMap()
)

call_result = await update_column_partitioned_checks_daily.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_partitioned_checks_model

Updates configuration of column level data quality partitioned checks on a column, for a given time scale, from a UI friendly model.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/{timeScale}/model

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string
time_scale Time scale CheckTimeScale

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality partitioned checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/daily/model^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_partitioned_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_partitioned_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_partitioned_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                CheckTimeScale, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_partitioned_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    CheckTimeScale.daily,
    client=dqops_client,
    json_body=request_body
)

update_column_partitioned_checks_monthly

Updates configuration of monthly column level data quality partitioned checks on a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/partitioned/monthly

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Configuration of monthly column level data quality partitioned checks to configure on a column or an empty object to clear the list of assigned data quality partitioned checks on the column ColumnMonthlyPartitionedCheckCategoriesSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/partitioned/monthly^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"nulls\":{\"monthly_partition_nulls_count\":{\"error\":{\"max_count\":0}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyPartitionedChecksSpecMap, \
                                ColumnMonthlyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

call_result = update_column_partitioned_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyPartitionedChecksSpecMap, \
                                ColumnMonthlyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

call_result = await update_column_partitioned_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyPartitionedChecksSpecMap, \
                                ColumnMonthlyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

call_result = update_column_partitioned_checks_monthly.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_partitioned_checks_monthly
from dqops.client.models import ColumnComparisonMonthlyPartitionedChecksSpecMap, \
                                ColumnMonthlyPartitionedCheckCategoriesSpec, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsMonthlyPartitionedChecksSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnMonthlyPartitionedCheckCategoriesSpec(
    nulls=ColumnNullsMonthlyPartitionedChecksSpec(
        monthly_partition_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonMonthlyPartitionedChecksSpecMap()
)

call_result = await update_column_partitioned_checks_monthly.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_profiling_checks

Updates configuration of column level data quality profiling checks on a column.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Configuration of column level data quality profiling checks to configure on a column or an empty object to clear the list of assigned data quality profiling checks on the column ColumnProfilingCheckCategoriesSpec

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"nulls\":{\"profile_nulls_count\":{\"error\":{\"max_count\":0}}}}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

call_result = update_column_profiling_checks.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                MaxCountRule0ErrorParametersSpec

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

call_result = await update_column_profiling_checks.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

call_result = update_column_profiling_checks.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks
from dqops.client.models import ColumnComparisonProfilingChecksSpecMap, \
                                ColumnNullsCountCheckSpec, \
                                ColumnNullsNullsCountSensorParametersSpec, \
                                ColumnNullsProfilingChecksSpec, \
                                ColumnProfilingCheckCategoriesSpec, \
                                MaxCountRule0ErrorParametersSpec

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = ColumnProfilingCheckCategoriesSpec(
    nulls=ColumnNullsProfilingChecksSpec(
        profile_nulls_count=ColumnNullsCountCheckSpec(
            parameters=ColumnNullsNullsCountSensorParametersSpec(),
            error=MaxCountRule0ErrorParametersSpec(max_count=0),
            disabled=False,
            exclude_from_kpi=False,
            include_in_sla=False,
            always_collect_error_samples=False,
            do_not_schedule=False
        )
    ),
    comparisons=ColumnComparisonProfilingChecksSpecMap()
)

call_result = await update_column_profiling_checks.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

update_column_profiling_checks_model

Updates configuration of column level data quality profiling checks on a column from a UI friendly model.

Follow the link to see the source code on GitHub.

PUT

http://localhost:8888/api/connections/{connectionName}/schemas/{schemaName}/tables/{tableName}/columns/{columnName}/profiling/model

Parameters of this method are described below

 Property name   Description                       Data type   Required 
connection_name Connection name string
schema_name Schema name string
table_name Table name string
column_name Column name string

Request body

 Description                       Data type   Required 
Model with the changes to be applied to the data quality profiling checks configuration CheckContainerModel

Usage examples

Execution

curl -X PUT http://localhost:8888/api/connections/sample_connection/schemas/sample_schema/tables/sample_table/columns/sample_column/profiling/model^
    -H "Accept: application/json"^
    -H "Content-Type: application/json"^
    -d^
    "{\"categories\":[{\"category\":\"sample_category\",\"help_text\":\"Sample help text\",\"checks\":[{\"check_name\":\"sample_check\",\"help_text\":\"Sample help text\",\"sensor_parameters\":[],\"sensor_name\":\"sample_target/sample_category/table/volume/row_count\",\"quality_dimension\":\"sample_quality_dimension\",\"supports_error_sampling\":false,\"supports_grouping\":false,\"default_severity\":\"error\",\"disabled\":false,\"exclude_from_kpi\":false,\"include_in_sla\":false,\"configured\":false,\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}]}],\"can_edit\":false,\"can_run_checks\":false,\"can_delete_data\":false}"

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_profiling_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

dqops_client = client.Client(
    'http://localhost:8888/'
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_profiling_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = update_column_profiling_checks_model.sync(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)

Execution

from dqops import client
from dqops.client.api.columns import update_column_profiling_checks_model
from dqops.client.models import CheckContainerModel, \
                                CheckModel, \
                                DefaultRuleSeverityLevel, \
                                FieldModel, \
                                QualityCategoryModel

token = 's4mp13_4u7h_70k3n'

dqops_client = client.AuthenticatedClient(
    'http://localhost:8888/',
    token=token
)

request_body = CheckContainerModel(
    categories=[
        QualityCategoryModel(
            category='sample_category',
            help_text='Sample help text',
            checks=[
                CheckModel(
                    check_name='sample_check',
                    help_text='Sample help text',
                    sensor_parameters=[

                    ],
                    sensor_name='sample_target/sample_category/table/volume/row_count',
                    quality_dimension='sample_quality_dimension',
                    supports_error_sampling=False,
                    supports_grouping=False,
                    standard=False,
                    default_check=False,
                    default_severity=DefaultRuleSeverityLevel.ERROR,
                    disabled=False,
                    exclude_from_kpi=False,
                    include_in_sla=False,
                    configured=False,
                    always_collect_error_samples=False,
                    do_not_schedule=False,
                    can_edit=False,
                    can_run_checks=False,
                    can_delete_data=False
                )
            ]
        )
    ],
    can_edit=False,
    can_run_checks=False,
    can_delete_data=False
)

call_result = await update_column_profiling_checks_model.asyncio(
    'sample_connection',
    'sample_schema',
    'sample_table',
    'sample_column',
    client=dqops_client,
    json_body=request_body
)