Skip to content

Last updated: July 22, 2025

Row count change data quality checks, SQL examples

This check compares the current table volume (the row count) to the last known row count. It raises a data quality issue when the change in row count (increase or decrease) exceeds a maximum accepted percentage of change.


The row count change data quality check has the following variants for each type of data quality checks supported by DQOps.

profile row count change

Check description

Detects when the volume's (row count) change since the last known row count exceeds the maximum accepted change percentage.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_row_count_change Maximum relative change in the row count since the last known value volume profiling Consistency row_count change_percent

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile row count change data quality check.

Managing profile row count change check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_row_count_change --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_row_count_change --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_row_count_change --enable-warning
                    -Wmax_percent=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_row_count_change --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_row_count_change --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_row_count_change --enable-error
                    -Emax_percent=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_row_count_change check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=profile_row_count_change

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_row_count_change

You can also run this check on all tables on which the profile_row_count_change check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_row_count_change

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  profiling_checks:
    volume:
      profile_row_count_change:
        warning:
          max_percent: 10.0
        error:
          max_percent: 20.0
        fatal:
          max_percent: 50.0
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  profiling_checks:
    volume:
      profile_row_count_change:
        warning:
          max_percent: 10.0
        error:
          max_percent: 20.0
        fatal:
          max_percent: 50.0
  columns:
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

daily row count change

Check description

Detects when the volume's (row count) change since the last known row count exceeds the maximum accepted change percentage.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_row_count_change Maximum relative change in the row count since the last known value volume monitoring daily Consistency row_count change_percent

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily row count change data quality check.

Managing daily row count change check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_row_count_change --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_row_count_change --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_row_count_change --enable-warning
                    -Wmax_percent=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_row_count_change --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_row_count_change --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_row_count_change --enable-error
                    -Emax_percent=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_row_count_change check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_row_count_change

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_row_count_change

You can also run this check on all tables on which the daily_row_count_change check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_row_count_change

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  monitoring_checks:
    daily:
      volume:
        daily_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    daily:
      volume:
        daily_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

monthly row count change

Check description

Detects when the volume (row count) changes since the last known row count from a previous month exceeds the maximum accepted change percentage.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_row_count_change Maximum relative change in the row count since the last known value volume monitoring monthly Consistency row_count change_percent

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly row count change data quality check.

Managing monthly row count change check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_row_count_change --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_row_count_change --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_row_count_change --enable-warning
                    -Wmax_percent=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_row_count_change --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_row_count_change --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_row_count_change --enable-error
                    -Emax_percent=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_row_count_change check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_row_count_change

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_row_count_change

You can also run this check on all tables on which the monthly_row_count_change check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_row_count_change

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  monitoring_checks:
    monthly:
      volume:
        monthly_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM  AS analyzed_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_table>` AS analyzed_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value
FROM(
    SELECT
        original_table.*
    FROM "<target_table>" original_table
) analyzed_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM `<target_schema>`.`<target_table>` AS analyzed_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM "<target_schema>"."<target_table>" AS analyzed_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value
FROM (
    SELECT 1 AS actual_value
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  monitoring_checks:
    monthly:
      volume:
        monthly_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
        , 
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2

FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2

daily partition row count change

Check description

Detects when the partition's volume (row count) change between the current daily partition and the previous partition exceeds the maximum accepted change percentage.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_partition_row_count_change Maximum relative change in the row count since the last known value volume partitioned daily Consistency row_count change_percent

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily partition row count change data quality check.

Managing daily partition row count change check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_partition_row_count_change --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_row_count_change --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_row_count_change --enable-warning
                    -Wmax_percent=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_partition_row_count_change --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_row_count_change --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_row_count_change --enable-error
                    -Emax_percent=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_partition_row_count_change check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_partition_row_count_change

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_partition_row_count_change

You can also run this check on all tables on which the daily_partition_row_count_change check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_partition_row_count_change

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  partitioned_checks:
    daily:
      volume:
        daily_partition_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    TRUNC(CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    CAST(analyzed_table.[date_column] AS date) AS time_period,
    CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  partitioned_checks:
    daily:
      volume:
        daily_partition_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS DATE)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    TRUNC(CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(DATE_TRUNC('day', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('day', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    CAST(analyzed_table.`date_column` AS DATE) AS time_period,
    TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    CAST(analyzed_table.[date_column] AS date) AS time_period,
    CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
ORDER BY level_1, level_2CAST(analyzed_table.[date_column] AS date)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS DATE) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    CAST(analyzed_table."date_column" AS date) AS time_period,
    CAST(CAST(analyzed_table."date_column" AS date) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

monthly partition row count change

Check description

Detects when the partition's volume (row count) change between the current monthly partition and the previous partition exceeds the maximum accepted change percentage.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_partition_row_count_change Maximum relative change in the row count since the last known value volume partitioned monthly Consistency row_count change_percent

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly partition row count change data quality check.

Managing monthly partition row count change check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_partition_row_count_change --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_row_count_change --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_row_count_change --enable-warning
                    -Wmax_percent=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_partition_row_count_change --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_row_count_change --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_row_count_change --enable-error
                    -Emax_percent=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_partition_row_count_change check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_partition_row_count_change

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_partition_row_count_change

You can also run this check on all tables on which the monthly_partition_row_count_change check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_partition_row_count_change

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  partitioned_checks:
    monthly:
      volume:
        monthly_partition_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count data quality sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS DATE))) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    SERIES_ROUND(CAST(analyzed_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
    TO_TIMESTAMP(SERIES_ROUND(CAST(analyzed_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
    CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc

Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).

Configuration with data grouping

Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  timestamp_columns:
    partition_by_column: date_column
  incremental_time_window:
    daily_partitioning_recent_days: 7
    monthly_partitioning_recent_months: 1
  default_grouping_name: group_by_country_and_state
  groupings:
    group_by_country_and_state:
      level_1:
        source: column_value
        column: country
      level_2:
        source: column_value
        column: state
  partitioned_checks:
    monthly:
      volume:
        monthly_partition_row_count_change:
          warning:
            max_percent: 10.0
          error:
            max_percent: 20.0
          fatal:
            max_percent: 50.0
  columns:
    date_column:
      labels:
      - "date or datetime column used as a daily or monthly partitioning key, dates\
        \ (and times) are truncated to a day or a month by the sensor's query for\
        \ partitioned checks"
    country:
      labels:
      - column used as the first grouping key
    state:
      labels:
      - column used as the second grouping key

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the row_count sensor.

BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
    TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS DATE))) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM  AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    SERIES_ROUND(CAST(analyzed_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
    TO_TIMESTAMP(SERIES_ROUND(CAST(analyzed_table."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
    FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MONTH') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_database"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
SELECT
    COUNT() AS actual_value
    {{- lib.render_data_grouping_projections_reference('analyzed_table') }}
    {{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
    SELECT
        original_table.*
        {{- lib.render_data_grouping_projections('original_table') }}
        {{- lib.render_time_dimension_projection('original_table') }}
    FROM {{ lib.render_target_table() }} original_table
) analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT() AS actual_value,

                analyzed_table.grouping_level_1,

                analyzed_table.grouping_level_2,
    time_period,
    time_period_utc
FROM(
    SELECT
        original_table.*,
    original_table."country" AS grouping_level_1,
    original_table."state" AS grouping_level_2,
    CAST(DATE_TRUNC('month', original_table."date_column") AS DATE) AS time_period,
    CAST((CAST(DATE_TRUNC('month', original_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
    FROM "<target_table>" original_table
) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table.`country` AS grouping_level_1,
    analyzed_table.`state` AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
    TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
    COUNT_BIG(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT_BIG(*) AS actual_value,
    analyzed_table.[country] AS grouping_level_1,
    analyzed_table.[state] AS grouping_level_2,
    DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
    CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
ORDER BY level_1, level_2DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections('analyzed_table') }}
    {{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
    CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
SELECT
    COUNT(*) AS actual_value
    {{- lib.render_data_grouping_projections_reference('grouping_table') }}
    {{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
    SELECT 1 AS actual_value
        {{- lib.render_data_grouping_projections('analyzed_table') }}
        {{- lib.render_time_dimension_projection('analyzed_table') }}
    FROM {{ lib.render_target_table() }} analyzed_table
    {{- lib.render_where_clause() -}}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
    COUNT(*) AS actual_value,

                grouping_table.grouping_level_1,

                grouping_table.grouping_level_2
,
    time_period,
    time_period_utc
FROM (
    SELECT 1 AS actual_value,
    analyzed_table."country" AS grouping_level_1,
    analyzed_table."state" AS grouping_level_2,
    DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
    CAST(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
    FROM "your_trino_catalog"."<target_schema>"."<target_table>" analyzed_table) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc

What's next