Last updated: July 22, 2025
Duplicate record percent data quality checks, SQL examples
This check measures the percentage of duplicate records values. It raises a data quality issue when the percentage of duplicates is above a minimum accepted value. The default threshold is 0% duplicate values.
The duplicate record percent data quality check has the following variants for each type of data quality checks supported by DQOps.
profile duplicate record percent
Check description
Verifies that the percentage of duplicate record values in a table does not exceed the maximum accepted percentage.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
profile_duplicate_record_percent |
Maximum percentage of duplicate records | uniqueness | profiling | Uniqueness | duplicate_record_percent | max_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the profile duplicate record percent data quality check.
Managing profile duplicate record percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=profile_duplicate_record_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=profile_duplicate_record_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=profile_duplicate_record_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=profile_duplicate_record_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_duplicate_record_percent check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the profile_duplicate_record_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
profiling_checks:
uniqueness:
profile_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns: {}
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at]
) grouping_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
profiling_checks:
uniqueness:
profile_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], analyzed_table.[country], analyzed_table.[state]
) grouping_table
GROUP BY
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
daily duplicate record percent
Check description
Verifies that the percentage of duplicate record values in a table does not exceed the maximum accepted percentage.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_duplicate_record_percent |
Maximum percentage of duplicate records | uniqueness | monitoring | daily | Uniqueness | duplicate_record_percent | max_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily duplicate record percent data quality check.
Managing daily duplicate record percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_duplicate_record_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_duplicate_record_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_duplicate_record_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_duplicate_record_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_duplicate_record_percent check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the daily_duplicate_record_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
monitoring_checks:
daily:
uniqueness:
daily_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns: {}
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at]
) grouping_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
monitoring_checks:
daily:
uniqueness:
daily_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], analyzed_table.[country], analyzed_table.[state]
) grouping_table
GROUP BY
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
monthly duplicate record percent
Check description
Verifies that the percentage of duplicate record values in a table does not exceed the maximum accepted percentage.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
monthly_duplicate_record_percent |
Maximum percentage of duplicate records | uniqueness | monitoring | monthly | Uniqueness | duplicate_record_percent | max_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the monthly duplicate record percent data quality check.
Managing monthly duplicate record percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_duplicate_record_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_duplicate_record_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_duplicate_record_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_duplicate_record_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_duplicate_record_percent check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
You can also run this check on all tables on which the monthly_duplicate_record_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
monitoring_checks:
monthly:
uniqueness:
monthly_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns: {}
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at"
) grouping_table
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`
) grouping_table
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at]
) grouping_table
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at"
) grouping_table
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records
FROM (
SELECT
"id", "created_at"
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at"
) grouping_table
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
monitoring_checks:
monthly:
uniqueness:
monthly_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], analyzed_table.[country], analyzed_table.[state]
) grouping_table
GROUP BY
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2
) grouping_table
GROUP BY grouping_level_1, grouping_level_2
ORDER BY grouping_level_1, grouping_level_2
daily partition duplicate record percent
Check description
Verifies that the percentage of duplicate record values in a table does not exceed the maximum accepted percentage.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
daily_partition_duplicate_record_percent |
Maximum percentage of duplicate records | uniqueness | partitioned | daily | Uniqueness | duplicate_record_percent | max_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the daily partition duplicate record percent data quality check.
Managing daily partition duplicate record percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_partition_duplicate_record_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_partition_duplicate_record_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=daily_partition_duplicate_record_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=daily_partition_duplicate_record_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_partition_duplicate_record_percent check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_partition_duplicate_record_percent
You can also run this check on all tables on which the daily_partition_duplicate_record_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
partitioned_checks:
daily:
uniqueness:
daily_partition_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
CAST(analyzed_table_nested."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
CAST(analyzed_table_nested."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
TRUNC(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(analyzed_table_nested."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
CAST(analyzed_table_nested."date_column" AS date) AS time_period,
CAST(CAST(analyzed_table_nested."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
CAST(DATE_TRUNC('day', analyzed_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', analyzed_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
) grouping_table
GROUP BY
time_period,
time_period_utc
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
CAST(analyzed_table_nested."date_column" AS date) AS time_period,
CAST(CAST(analyzed_table_nested."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
partitioned_checks:
daily:
uniqueness:
daily_partition_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
toDateTime64(CAST(analyzed_table."date_column" AS DATE), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
CAST(analyzed_table_nested."date_column" AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
CAST(analyzed_table_nested."date_column" AS DATE) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
TRUNC(CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period,
CAST(TRUNC(CAST(analyzed_table_nested."date_column" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
CAST(analyzed_table_nested."date_column" AS date) AS time_period,
CAST(CAST(analyzed_table_nested."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('day', analyzed_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('day', analyzed_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
CAST((CAST(analyzed_table."date_column" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."date_column" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`date_column` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`date_column` AS DATE)) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(analyzed_table.[date_column] AS date) AS time_period,
CAST((CAST(analyzed_table.[date_column] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[date_column] AS date), CAST(analyzed_table.[date_column] AS date)
) grouping_table
GROUP BY
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."date_column" AS DATE) AS time_period,
CAST(CAST(analyzed_table."date_column" AS DATE) AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
CAST(analyzed_table_nested."date_column" AS date) AS time_period,
CAST(CAST(analyzed_table_nested."date_column" AS date) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
monthly partition duplicate record percent
Check description
Verifies that the percentage of duplicate record values in a table does not exceed the maximum accepted percentage.
Data quality check name | Friendly name | Category | Check type | Time scale | Quality dimension | Sensor definition | Quality rule | Standard |
---|---|---|---|---|---|---|---|---|
monthly_partition_duplicate_record_percent |
Maximum percentage of duplicate records | uniqueness | partitioned | monthly | Uniqueness | duplicate_record_percent | max_percent |
Command-line examples
Please expand the section below to see the DQOps command-line examples to run or activate the monthly partition duplicate record percent data quality check.
Managing monthly partition duplicate record percent check from DQOps shell
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_partition_duplicate_record_percent --enable-warning
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_partition_duplicate_record_percent --enable-warning
Additional rule parameters are passed using the -Wrule_parameter_name=value.
Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.
dqo> check activate -c=connection_name -t=schema_name.table_name -ch=monthly_partition_duplicate_record_percent --enable-error
You can also use patterns to activate the check on all matching tables and columns.
dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -ch=monthly_partition_duplicate_record_percent --enable-error
Additional rule parameters are passed using the -Erule_parameter_name=value.
Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_partition_duplicate_record_percent check on all tables on a single data source.
It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.
dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_partition_duplicate_record_percent
You can also run this check on all tables on which the monthly_partition_duplicate_record_percent check is enabled using patterns to find tables.
YAML configuration
The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
partitioned_checks:
monthly:
uniqueness:
monthly_partition_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
Samples of generated SQL queries for each data source type
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent data quality sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
SERIES_ROUND(CAST(analyzed_table_nested."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(analyzed_table_nested."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
TRUNC(CAST(analyzed_table_nested."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(analyzed_table_nested."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
CAST(DATE_TRUNC('month', analyzed_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', analyzed_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
) grouping_table
GROUP BY
time_period,
time_period_utc
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", time_period, time_period_utc
) grouping_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Expand the Configure with data grouping section to see additional examples for configuring this data quality checks to use data grouping (GROUP BY).
Configuration with data grouping
Sample configuration with data grouping enabled (YAML) The sample below shows how to configure the data grouping and how it affects the generated SQL query.
# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
partition_by_column: date_column
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
partitioned_checks:
monthly:
uniqueness:
monthly_partition_duplicate_record_percent:
parameters:
columns:
- id
- created_at
warning:
max_percent: 0.0
error:
max_percent: 1.0
fatal:
max_percent: 5.0
columns:
date_column:
labels:
- "date or datetime column used as a daily or monthly partitioning key, dates\
\ (and times) are truncated to a day or a month by the sensor's query for\
\ partitioned checks"
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the duplicate_record_percent sensor.
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`date_column` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ClickHouse
{% import '/dialects/clickhouse.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='toString(', column_suffix=')') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN sumOrNull(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)) AS time_period,
toDateTime64(DATE_TRUNC('month', CAST(analyzed_table."date_column" AS DATE)), 3) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(toString("id"), toString("created_at")) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Databricks
{% import '/dialects/databricks.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DB2
{% import '/dialects/db2.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS DATE))) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
DuckDB
{% import '/dialects/duckdb.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST( ', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM AS analyzed_table
WHERE (COALESCE(CAST( "id" AS VARCHAR), CAST( "created_at" AS VARCHAR)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
HANA
{% import '/dialects/hana.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
SERIES_ROUND(CAST(analyzed_table_nested."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN) AS time_period,
TO_TIMESTAMP(SERIES_ROUND(CAST(analyzed_table_nested."date_column" AS DATE), 'INTERVAL 1 MONTH', ROUND_DOWN)) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MariaDB
{% import '/dialects/mariadb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.`date_column`, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
WHERE (COALESCE(`id`, `created_at`) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4000))') ~ ') IS NOT NULL') }}
) analyzed_table
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
TRUNC(CAST(analyzed_table_nested."date_column" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(analyzed_table_nested."date_column" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR(4000)), CAST("created_at" AS VARCHAR(4000))) IS NOT NULL)
) analyzed_table
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Presto
{% import '/dialects/presto.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_database"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
QuestDB
{% import '/dialects/questdb.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}}
{%- if not loop.last -%}
{{- ", " if separate_by_comma else " || " -}}
{%- endif -%}
{%- endfor -%}
{% endmacro %}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT({{ extract_in_list(parameters.columns) -}}) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR', separate_by_comma=true) ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns, separate_by_comma=true) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COALESCE(
(1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0
, 0) AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT() AS records_number,
COUNT_DISTINCT("id" || "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(DATE_TRUNC('month', analyzed_table."date_column") AS DATE) AS time_period,
CAST((CAST(DATE_TRUNC('month', analyzed_table."date_column") AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_suffix='::VARCHAR') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE("id"::VARCHAR, "created_at"::VARCHAR) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."date_column" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS STRING), CAST("created_at" AS STRING)) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Spark
{% import '/dialects/spark.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS STRING)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY `id`, `created_at`) AS distinct_records,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE)) AS time_period,
TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table.`date_column` AS DATE))) AS time_period_utc
FROM `<target_schema>`.`<target_table>` AS analyzed_table
WHERE (COALESCE(CAST(`id` AS STRING), CAST(`created_at` AS STRING)) IS NOT NULL)
GROUP BY `id`, `created_at`, grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro -%}
{% macro render_group_by(table_alias_prefix = 'grouping_table', indentation = ' ') %}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none -%}
GROUP BY
{%- endif -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{- ',' if not loop.first -}}{{- lib.eol() }}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute -}}
{%- endfor -%}
{%- endif -%}
{%- if lib.time_series is not none -%}
{{ ',' if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -}}{{- lib.eol() -}}
{{ indentation }}time_period,{{ lib.eol() -}}
{{ indentation }}time_period_utc
{%- endif -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{ render_group_by('grouping_table') }}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY [id], [created_at]) AS distinct_records,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
WHERE (COALESCE(CAST([id] AS VARCHAR), CAST([created_at] AS VARCHAR)) IS NOT NULL)
GROUP BY [id], [created_at], analyzed_table.[country], analyzed_table.[state], DATEFROMPARTS(YEAR(CAST(analyzed_table.[date_column] AS date)), MONTH(CAST(analyzed_table.[date_column] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[date_column]), 0)
) grouping_table
GROUP BY
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
Teradata
{% import '/dialects/teradata.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections('analyzed_table', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR(4096))') ~ ') IS NOT NULL') }}
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) * 1.0 / SUM(records_number)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS time_period,
CAST(TRUNC(CAST(analyzed_table."date_column" AS DATE), 'MM') AS TIMESTAMP) AS time_period_utc
FROM "<target_schema>"."<target_table>" AS analyzed_table
WHERE (COALESCE(CAST("id" AS VARCHAR(4096)), CAST("created_at" AS VARCHAR(4096))) IS NOT NULL)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Trino
{% import '/dialects/trino.sql.jinja2' as lib with context -%}
{% macro extract_in_list(values_list, column_prefix = none, column_suffix = none, separate_by_comma = false) %}
{%- set column_names = table.columns if values_list is none or (values_list | length()) == 0 else values_list -%}
{%- for item in column_names -%}
{{ (column_prefix) if column_prefix is not none -}} {{- lib.quote_identifier(item) -}} {{- (column_suffix) if column_suffix is not none -}} {{- ", " if not loop.last }} {{- "', ', " if separate_by_comma and not loop.last }}
{%- endfor -%}
{% endmacro %}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value
{{- lib.render_data_grouping_projections_reference('grouping_table') }}
{{- lib.render_time_dimension_projection_reference('grouping_table') }}
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY {{ extract_in_list(parameters.columns) -}} ) AS distinct_records
{{- lib.render_data_grouping_projections_reference('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table_nested', indentation=' ') }}
FROM (
SELECT
{{ extract_in_list(parameters.columns) -}}
{{- lib.render_data_grouping_projections('analyzed_table_nested', indentation=' ') }}
{{- lib.render_time_dimension_projection('analyzed_table_nested', indentation=' ') }}
FROM {{ lib.render_target_table() }} AS analyzed_table_nested
{{- lib.render_where_clause(table_alias_prefix = 'analyzed_table_nested', indentation=' ', extra_filter = 'COALESCE(' ~ extract_in_list(parameters.columns, column_prefix='CAST(', column_suffix=' AS VARCHAR)') ~ ') IS NOT NULL') }}
)
GROUP BY {{ extract_in_list(parameters.columns) -}} {{- (", " ~ lib.render_grouping_column_names()) if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or lib.time_series is not none }}
) grouping_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
CASE WHEN SUM(distinct_records) IS NULL THEN 0
ELSE (1 - SUM(distinct_records) / CAST(SUM(records_number) AS DOUBLE)) * 100.0 END
AS actual_value,
grouping_table.grouping_level_1,
grouping_table.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT COUNT(*) AS records_number,
COUNT(*) OVER (PARTITION BY "id", "created_at") AS distinct_records,
analyzed_table_nested.grouping_level_1,
analyzed_table_nested.grouping_level_2
,
time_period,
time_period_utc
FROM (
SELECT
"id", "created_at",
analyzed_table_nested."country" AS grouping_level_1,
analyzed_table_nested."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS time_period,
CAST(DATE_TRUNC('MONTH', CAST(analyzed_table_nested."date_column" AS date)) AS TIMESTAMP) AS time_period_utc
FROM "your_trino_catalog"."<target_schema>"."<target_table>" AS analyzed_table_nested
WHERE (COALESCE(CAST("id" AS VARCHAR), CAST("created_at" AS VARCHAR)) IS NOT NULL)
)
GROUP BY "id", "created_at", grouping_level_1, grouping_level_2, time_period, time_period_utc
) grouping_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
What's next
- Learn how to configure data quality checks in DQOps
- Look at the examples of running data quality checks, targeting tables and columns