Skip to content

Last updated: July 22, 2025

Column count data quality checks, SQL examples

A table-level check that retrieves the metadata of the monitored table from the data source, counts the number of columns and compares it to an expected number of columns.


The column count data quality check has the following variants for each type of data quality checks supported by DQOps.

profile column count

Check description

Detects if the number of column matches an expected number. Retrieves the metadata of the monitored table, counts the number of columns and compares it to an expected value (an expected number of columns).

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_column_count Expected column count schema profiling Completeness column_count equals_integer

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile column count data quality check.

Managing profile column count check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_column_count --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_column_count --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_column_count --enable-warning
                    -Wexpected_value=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=profile_column_count --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_column_count --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_column_count --enable-error
                    -Eexpected_value=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_column_count check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=profile_column_count

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_column_count

You can also run this check on all tables on which the profile_column_count check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=profile_column_count

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  profiling_checks:
    schema:
      profile_column_count:
        error:
          expected_value: 10
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_count data quality sensor.


daily column count

Check description

Detects if the number of column matches an expected number. Retrieves the metadata of the monitored table, counts the number of columns and compares it to an expected value (an expected number of columns). Stores the most recent column count for each day when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_column_count Expected column count schema monitoring daily Completeness column_count equals_integer

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily column count data quality check.

Managing daily column count check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_column_count --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_column_count --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_column_count --enable-warning
                    -Wexpected_value=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=daily_column_count --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_column_count --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_column_count --enable-error
                    -Eexpected_value=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_column_count check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=daily_column_count

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_column_count

You can also run this check on all tables on which the daily_column_count check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=daily_column_count

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  monitoring_checks:
    daily:
      schema:
        daily_column_count:
          error:
            expected_value: 10
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_count data quality sensor.


monthly column count

Check description

Detects if the number of column matches an expected number. Retrieves the metadata of the monitored table, counts the number of columns and compares it to an expected value (an expected number of columns). Stores the most recent column count for each month when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_column_count Expected column count schema monitoring monthly Completeness column_count equals_integer

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly column count data quality check.

Managing monthly column count check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_column_count --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_column_count --enable-warning

Additional rule parameters are passed using the -Wrule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_column_count --enable-warning
                    -Wexpected_value=value

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name  -ch=monthly_column_count --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_column_count --enable-error

Additional rule parameters are passed using the -Erule_parameter_name=value.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_column_count --enable-error
                    -Eexpected_value=value

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_column_count check on all tables on a single data source.

dqo> check run -c=data_source_name -ch=monthly_column_count

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_column_count

You can also run this check on all tables on which the monthly_column_count check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_*  -ch=monthly_column_count

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  monitoring_checks:
    monthly:
      schema:
        monthly_column_count:
          error:
            expected_value: 10
  columns: {}
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_count data quality sensor.


What's next