Skip to content

Last updated: July 22, 2025

Column type changed data quality checks, SQL examples

A column-level check that detects if the data type of the column has changed since the last retrieval. This check calculates the hash of all the components of the column's data type: the data type name, length, scale, precision and nullability. A data quality issue will be detected if the hash of the column's data types has changed.


The column type changed data quality check has the following variants for each type of data quality checks supported by DQOps.

profile column type changed

Check description

Checks the metadata of the monitored column and detects if the data type (including the length, precision, scale, nullability) has changed.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_column_type_changed Verify if the column data type has changed schema profiling Consistency column_type_hash value_changed

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile column type changed data quality check.

Managing profile column type changed check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_column_type_changed --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_column_type_changed --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_column_type_changed --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_column_type_changed --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_column_type_changed check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=profile_column_type_changed

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_column_type_changed

You can also run this check on all tables (and columns) on which the profile_column_type_changed check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=profile_column_type_changed

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      profiling_checks:
        schema:
          profile_column_type_changed:
            error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_type_hash data quality sensor.


daily column type changed

Check description

Checks the metadata of the monitored column and detects if the data type (including the length, precision, scale, nullability) has changed since the last day. Stores the most recent hash for each day when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_column_type_changed Verify if the column data type has changed schema monitoring daily Consistency column_type_hash value_changed

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily column type changed data quality check.

Managing daily column type changed check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_column_type_changed --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_column_type_changed --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_column_type_changed --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_column_type_changed --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_column_type_changed check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=daily_column_type_changed

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_column_type_changed

You can also run this check on all tables (and columns) on which the daily_column_type_changed check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=daily_column_type_changed

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      monitoring_checks:
        daily:
          schema:
            daily_column_type_changed:
              error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_type_hash data quality sensor.


monthly column type changed

Check description

Checks the metadata of the monitored column and detects if the data type (including the length, precision, scale, nullability) has changed since the last month. Stores the most recent hash for each month when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_column_type_changed Verify if the column data type has changed schema monitoring monthly Consistency column_type_hash value_changed

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly column type changed data quality check.

Managing monthly column type changed check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_column_type_changed --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_column_type_changed --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_column_type_changed --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_column_type_changed --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_column_type_changed check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=monthly_column_type_changed

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_column_type_changed

You can also run this check on all tables (and columns) on which the monthly_column_type_changed check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=monthly_column_type_changed

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      monitoring_checks:
        monthly:
          schema:
            monthly_column_type_changed:
              error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_type_hash data quality sensor.


What's next