Skip to content

Last updated: July 22, 2025

Column exists data quality checks, SQL examples

A column-level check that reads the metadata of the monitored table and verifies if the column still exists in the data source. The data quality sensor returns a value of 1.0 when the column is found or 0.0 when the column is not found.


The column exists data quality check has the following variants for each type of data quality checks supported by DQOps.

profile column exists

Check description

Checks the metadata of the monitored table and verifies if the column exists.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
profile_column_exists Verify if the column exists schema profiling Completeness column_exists equals_1

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the profile column exists data quality check.

Managing profile column exists check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_column_exists --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_column_exists --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=profile_column_exists --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=profile_column_exists --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the profile_column_exists check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=profile_column_exists

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=profile_column_exists

You can also run this check on all tables (and columns) on which the profile_column_exists check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=profile_column_exists

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      profiling_checks:
        schema:
          profile_column_exists:
            error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_exists data quality sensor.


daily column exists

Check description

Checks the metadata of the monitored table and verifies if the column exists. Stores the most recent value for each day when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
daily_column_exists Verify if the column exists schema monitoring daily Completeness column_exists equals_1

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the daily column exists data quality check.

Managing daily column exists check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_column_exists --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_column_exists --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=daily_column_exists --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=daily_column_exists --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the daily_column_exists check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=daily_column_exists

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=daily_column_exists

You can also run this check on all tables (and columns) on which the daily_column_exists check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=daily_column_exists

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      monitoring_checks:
        daily:
          schema:
            daily_column_exists:
              error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_exists data quality sensor.


monthly column exists

Check description

Checks the metadata of the monitored table and verifies if the column exists. Stores the most recent value for each month when the data quality check was evaluated.

Data quality check name Friendly name Category Check type Time scale Quality dimension Sensor definition Quality rule Standard
monthly_column_exists Verify if the column exists schema monitoring monthly Completeness column_exists equals_1

Command-line examples

Please expand the section below to see the DQOps command-line examples to run or activate the monthly column exists data quality check.

Managing monthly column exists check from DQOps shell

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the warning rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_column_exists --enable-warning

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_column_exists --enable-warning

Activate this data quality using the check activate CLI command, providing the connection name, table name, check name, and all other filters. Activates the error rule with the default parameters.

dqo> check activate -c=connection_name -t=schema_name.table_name -col=column_name -ch=monthly_column_exists --enable-error

You can also use patterns to activate the check on all matching tables and columns.

dqo> check activate -c=connection_name -t=schema_prefix*.fact_* -col=column_name -ch=monthly_column_exists --enable-error

Run this data quality check using the check run CLI command by providing the check name and all other targeting filters. The following example shows how to run the monthly_column_exists check on all tables and columns on a single data source.

dqo> check run -c=data_source_name -ch=monthly_column_exists

It is also possible to run this check on a specific connection and table. In order to do this, use the connection name and the full table name parameters.

dqo> check run -c=connection_name -t=schema_name.table_name -ch=monthly_column_exists

You can also run this check on all tables (and columns) on which the monthly_column_exists check is enabled using patterns to find tables.

dqo> check run -c=connection_name -t=schema_prefix*.fact_* -col=column_name_* -ch=monthly_column_exists

YAML configuration

The sample schema_name.table_name.dqotable.yaml file with the check configured is shown below.

# yaml-language-server: $schema=https://cloud.dqops.com/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
  columns:
    target_column:
      monitoring_checks:
        monthly:
          schema:
            monthly_column_exists:
              error: {}
      labels:
      - This is the column that is analyzed for data quality issues
Samples of generated SQL queries for each data source type

Please expand the database engine name section to see the SQL query rendered by a Jinja2 template for the column_exists data quality sensor.


What's next