string length above max length count
string length above max length count checks
Description
Column level check that ensures that the number of strings in the monitored column with a length above the length defined by the user as a parameter does not exceed set thresholds.
profile string length above max length count
Check description
The check counts the number of strings in the column that is above the length defined by the user as a parameter.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
profile_string_length_above_max_length_count | profiling | string_length_above_max_length_count | max_count |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_string_length_above_max_length_count
profiling_checks:
strings:
profile_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
profiling_checks:
strings:
profile_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
profiling_checks:
strings:
profile_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
daily string length above max length count
Check description
The check counts the number of strings in the column that is above the length defined by the user as a parameter. Stores the most recent captured value for each day when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_string_length_above_max_length_count | recurring | daily | string_length_above_max_length_count | max_count |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_string_length_above_max_length_count
recurring_checks:
daily:
strings:
daily_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
daily:
strings:
daily_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
recurring_checks:
daily:
strings:
daily_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
monthly string length above max length count
Check description
The check counts those strings with length above the one provided by the user in a column. Stores the most recent row count for each month when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
monthly_string_length_above_max_length_count | recurring | monthly | string_length_above_max_length_count | max_count |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_string_length_above_max_length_count
recurring_checks:
monthly:
strings:
monthly_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
monthly:
strings:
monthly_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
recurring_checks:
monthly:
strings:
monthly_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(CURRENT_TIMESTAMP AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state]
ORDER BY level_1, level_2
,
daily partition string length above max length count
Check description
The check counts the number of strings in the column that is above the length defined by the user as a parameter. Creates a separate data quality check (and an alert) for each daily partition.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_partition_string_length_above_max_length_count | partitioned | daily | string_length_above_max_length_count | max_count |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=daily_partition_string_length_above_max_length_count
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_partition_string_length_above_max_length_count
partitioned_checks:
daily:
strings:
daily_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
partitioned_checks:
daily:
strings:
daily_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(analyzed_table.`` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
TRUNC(CAST(original_table."" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(analyzed_table."" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
CAST(analyzed_table.[] AS date) AS time_period,
CAST((CAST(analyzed_table.[] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY CAST(analyzed_table.[] AS date), CAST(analyzed_table.[] AS date)
ORDER BY CAST(analyzed_table.[] AS date)
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
partitioned_checks:
daily:
strings:
daily_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(analyzed_table.`` AS DATE) AS time_period,
TIMESTAMP(CAST(analyzed_table.`` AS DATE)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.grouping_level_1,
analyzed_table.grouping_level_2
,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
original_table."country" AS grouping_level_1,
original_table."state" AS grouping_level_2,
TRUNC(CAST(original_table."" AS DATE)) AS time_period,
CAST(TRUNC(CAST(original_table."" AS DATE)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."" AS date) AS time_period,
CAST((CAST(analyzed_table."" AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(analyzed_table."" AS date) AS time_period,
TO_TIMESTAMP(CAST(analyzed_table."" AS date)) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(analyzed_table.[] AS date) AS time_period,
CAST((CAST(analyzed_table.[] AS date)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], CAST(analyzed_table.[] AS date), CAST(analyzed_table.[] AS date)
ORDER BY level_1, level_2CAST(analyzed_table.[] AS date)
monthly partition string length above max length count
Check description
The check counts the number of strings in the column that is above the length defined by the user as a parameter. Creates a separate data quality check (and an alert) for each monthly partition.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
monthly_partition_string_length_above_max_length_count | partitioned | monthly | string_length_above_max_length_count | max_count |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below
dqo> check run -c=connection_name -t=table_name -ch=monthly_partition_string_length_above_max_length_count
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_partition_string_length_above_max_length_count
partitioned_checks:
monthly:
strings:
monthly_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
partitioned_checks:
monthly:
strings:
monthly_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC(CAST(analyzed_table.`` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_FORMAT(analyzed_table.``, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Oracle
{% import '/dialects/oracle.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections_reference('analyzed_table') }}
{{- lib.render_time_dimension_projection_reference('analyzed_table') }}
FROM(
SELECT
original_table.*
{{- lib.render_data_grouping_projections('original_table') }}
{{- lib.render_time_dimension_projection('original_table') }}
FROM {{ lib.render_target_table() }} original_table
{{- lib.render_where_clause(table_alias_prefix='original_table') }}) analyzed_table
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
time_period,
time_period_utc
FROM(
SELECT
original_table.*,
TRUNC(CAST(original_table."" AS DATE), 'MONTH') AS time_period,
CAST(TRUNC(CAST(original_table."" AS DATE), 'MONTH') AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "<target_schema>"."<target_table>" original_table) analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table."target_column") >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM "your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH(CAST({{ lib.render_target_column('analyzed_table')}} AS STRING)) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(CAST(analyzed_table."target_column" AS STRING)) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(analyzed_table."" AS date))) AS time_period_utc
FROM "your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LEN({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LEN(analyzed_table.[target_column]) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
DATEFROMPARTS(YEAR(CAST(analyzed_table.[] AS date)), MONTH(CAST(analyzed_table.[] AS date)), 1) AS time_period,
CAST((DATEFROMPARTS(YEAR(CAST(analyzed_table.[] AS date)), MONTH(CAST(analyzed_table.[] AS date)), 1)) AS DATETIME) AS time_period_utc
FROM [your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[] AS date)), MONTH(CAST(analyzed_table.[] AS date)), 1), DATEADD(month, DATEDIFF(month, 0, analyzed_table.[]), 0)
ORDER BY DATEFROMPARTS(YEAR(CAST(analyzed_table.[] AS date)), MONTH(CAST(analyzed_table.[] AS date)), 1)
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
partitioned_checks:
monthly:
strings:
monthly_partition_string_length_above_max_length_count:
parameters:
max_length: 5
warning:
max_count: 0
error:
max_count: 10
fatal:
max_count: 15
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{% macro render_column_cast_to_string(analyzed_table_to_render) -%}
{%- if (lib.target_column_data_type == 'STRING') -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- elif (lib.target_column_data_type == 'BIGNUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGDECIMAL') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'FLOAT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT64') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'NUMERIC') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'SMALLINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'INTEGER') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BIGINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TINYINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BYTEINT') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATE') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'DATETIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIME') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'TIMESTAMP') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- elif (lib.target_column_data_type == 'BOOLEAN') -%}
SAFE_CAST({{ lib.render_target_column(analyzed_table_to_render) }} AS STRING)
{%- else -%}
{{ lib.render_target_column(analyzed_table_to_render) }}
{%- endif -%}
{% endmacro -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ render_column_cast_to_string('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(analyzed_table.`` AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(analyzed_table.`` AS DATE), MONTH)) AS time_period_utc
FROM `your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
SELECT
SUM(
CASE
WHEN LENGTH({{ lib.render_target_column('analyzed_table')}}) >= {{(parameters.max_length)}}
THEN 1
ELSE 0
END
) AS actual_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause() -}}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
SUM(
CASE
WHEN LENGTH(analyzed_table.`target_column`) >= 5
THEN 1
ELSE 0
END
) AS actual_value,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(analyzed_table.``, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(analyzed_table.``, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM `<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Oracle