expected strings in top values count
expected strings in top values count checks
Description
Column level check that counts how many expected string values are among the TOP most popular values in the column.
The check will first count the number of occurrences of each column's value and will pick the TOP X most popular values (configurable by the 'top' parameter).
Then, it will compare the list of most popular values to the given list of expected values that should be most popular.
This check will verify how many supposed most popular values (provided in the 'expected_values' list) were not found in the top X most popular values in the column.
This check is useful for analyzing string columns that have several very popular values, these could be the country codes of the countries with the most number of customers.
profile expected strings in top values count
Check description
Verifies that the top X most popular column values contain all values from a list of expected values.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
profile_expected_strings_in_top_values_count | profiling | expected_strings_in_top_values_count | max_missing |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=profile_expected_strings_in_top_values_count
profiling_checks:
strings:
profile_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
profiling_checks:
strings:
profile_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM
`your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM
`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM
"your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT_BIG(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or (lib.time_series.mode is not none and lib.time_series.mode != 'current_time') -%}
{{- lib.render_group_by(indentation = ' ') }}, {{ lib.render_target_column('analyzed_table') }}
{%- else %}
GROUP BY {{ lib.render_target_column('analyzed_table') }}
{%- endif %}
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
top_values.grouping_{{ attribute }}{{ ', ' }}
{%- endfor -%}
{%- endif -%}
top_values.time_period,
top_values.time_period_utc
{{ render_from_subquery() }}
{%- endif %}
GROUP BY time_period, time_period_utc
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{{ ', ' }}top_values.grouping_{{ attribute }}
{%- endfor -%}
{%- endif -%}
SELECT
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.[target_column] AS top_value,
COUNT_BIG(*) AS total_values,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM
[your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[target_column]
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
profiling_checks:
strings:
profile_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH) AS time_period,
TIMESTAMP(DATE_TRUNC(CAST(CURRENT_TIMESTAMP() AS DATE), MONTH)) AS time_period_utc
FROM
`your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-01 00:00:00'))) AS time_period_utc
FROM
`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date)) AS time_period,
CAST((DATE_TRUNC('MONTH', CAST(LOCALTIMESTAMP AS date))) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period,
TO_TIMESTAMP(DATE_TRUNC('MONTH', CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date))) AS time_period_utc
FROM
"your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT_BIG(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or (lib.time_series.mode is not none and lib.time_series.mode != 'current_time') -%}
{{- lib.render_group_by(indentation = ' ') }}, {{ lib.render_target_column('analyzed_table') }}
{%- else %}
GROUP BY {{ lib.render_target_column('analyzed_table') }}
{%- endif %}
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
top_values.grouping_{{ attribute }}{{ ', ' }}
{%- endfor -%}
{%- endif -%}
top_values.time_period,
top_values.time_period_utc
{{ render_from_subquery() }}
{%- endif %}
GROUP BY time_period, time_period_utc
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{{ ', ' }}top_values.grouping_{{ attribute }}
{%- endfor -%}
{%- endif -%}
SELECT
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,top_values.grouping_level_1, top_values.grouping_level_2, top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.[target_column] AS top_value,
COUNT_BIG(*) AS total_values,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0) AS time_period,
CAST((DATEADD(month, DATEDIFF(month, 0, SYSDATETIMEOFFSET()), 0)) AS DATETIME) AS time_period_utc
FROM
[your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], analyzed_table.[target_column]
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc, top_values.grouping_level_1, top_values.grouping_level_2
daily expected strings in top values count
Check description
Verifies that the top X most popular column values contain all values from a list of expected values. Stores the most recent captured value for each day when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
daily_expected_strings_in_top_values_count | recurring | daily | expected_strings_in_top_values_count | max_missing |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=daily_expected_strings_in_top_values_count
recurring_checks:
daily:
strings:
daily_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
daily:
strings:
daily_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM
`your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM
`<target_table>` AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM
"your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY time_period, time_period_utc, top_value
ORDER BY time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
ORDER BY time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT_BIG(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or (lib.time_series.mode is not none and lib.time_series.mode != 'current_time') -%}
{{- lib.render_group_by(indentation = ' ') }}, {{ lib.render_target_column('analyzed_table') }}
{%- else %}
GROUP BY {{ lib.render_target_column('analyzed_table') }}
{%- endif %}
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
top_values.grouping_{{ attribute }}{{ ', ' }}
{%- endfor -%}
{%- endif -%}
top_values.time_period,
top_values.time_period_utc
{{ render_from_subquery() }}
{%- endif %}
GROUP BY time_period, time_period_utc
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{{ ', ' }}top_values.grouping_{{ attribute }}
{%- endfor -%}
{%- endif -%}
SELECT
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period
ORDER BY top_col_values.total_values) as top_values_rank
FROM
(
SELECT
analyzed_table.[target_column] AS top_value,
COUNT_BIG(*) AS total_values,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM
[your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[target_column]
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc
Configuration with data grouping
Click to see more
Sample configuration (Yaml)
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
default_grouping_name: group_by_country_and_state
groupings:
group_by_country_and_state:
level_1:
source: column_value
column: country
level_2:
source: column_value
column: state
columns:
target_column:
recurring_checks:
daily:
strings:
daily_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
country:
labels:
- column used as the first grouping key
state:
labels:
- column used as the second grouping key
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
CAST(CURRENT_TIMESTAMP() AS DATE) AS time_period,
TIMESTAMP(CAST(CURRENT_TIMESTAMP() AS DATE)) AS time_period_utc
FROM
`your-google-project-id`.`<target_schema>`.`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
MySQL
{% import '/dialects/mysql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.`target_column` AS top_value,
COUNT(*) AS total_values,
analyzed_table.`country` AS grouping_level_1,
analyzed_table.`state` AS grouping_level_2,
DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00') AS time_period,
FROM_UNIXTIME(UNIX_TIMESTAMP(DATE_FORMAT(LOCALTIMESTAMP, '%Y-%m-%d 00:00:00'))) AS time_period_utc
FROM
`<target_table>` AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
PostgreSQL
{% import '/dialects/postgresql.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_postgresql_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Redshift
{% import '/dialects/redshift.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(LOCALTIMESTAMP AS date) AS time_period,
CAST((CAST(LOCALTIMESTAMP AS date)) AS TIMESTAMP WITH TIME ZONE) AS time_period_utc
FROM
"your_redshift_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
Snowflake
{% import '/dialects/snowflake.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}
SELECT
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,
top_values.time_period,
top_values.time_period_utc,
top_values.grouping_level_1,
top_values.grouping_level_2
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table."target_column" AS top_value,
COUNT(*) AS total_values,
analyzed_table."country" AS grouping_level_1,
analyzed_table."state" AS grouping_level_2,
CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date) AS time_period,
TO_TIMESTAMP(CAST(TO_TIMESTAMP_NTZ(LOCALTIMESTAMP()) AS date)) AS time_period_utc
FROM
"your_snowflake_database"."<target_schema>"."<target_table>" AS analyzed_table
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc, top_value
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY grouping_level_1, grouping_level_2, time_period, time_period_utc
ORDER BY grouping_level_1, grouping_level_2, time_period, time_period_utc
SQL Server
{% import '/dialects/sqlserver.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT_BIG(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{%- if (lib.data_groupings is not none and (lib.data_groupings | length()) > 0) or (lib.time_series.mode is not none and lib.time_series.mode != 'current_time') -%}
{{- lib.render_group_by(indentation = ' ') }}, {{ lib.render_target_column('analyzed_table') }}
{%- else %}
GROUP BY {{ lib.render_target_column('analyzed_table') }}
{%- endif %}
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
top_values.grouping_{{ attribute }}{{ ', ' }}
{%- endfor -%}
{%- endif -%}
top_values.time_period,
top_values.time_period_utc
{{ render_from_subquery() }}
{%- endif %}
GROUP BY time_period, time_period_utc
{%- if (lib.data_groupings is not none and (lib.data_groupings | length) > 0) -%}
{%- for attribute in lib.data_groupings -%}
{{ ', ' }}top_values.grouping_{{ attribute }}
{%- endfor -%}
{%- endif -%}
SELECT
COUNT_BIG(DISTINCT
CASE
WHEN top_values.top_value IN ('USD', 'GBP', 'EUR') THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX(3) AS expected_value,top_values.grouping_level_1, top_values.grouping_level_2, top_values.time_period,
top_values.time_period_utc
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period, top_col_values.grouping_level_1, top_col_values.grouping_level_2
ORDER BY top_col_values.total_values) as top_values_rank, top_col_values.grouping_level_1, top_col_values.grouping_level_2
FROM
(
SELECT
analyzed_table.[target_column] AS top_value,
COUNT_BIG(*) AS total_values,
analyzed_table.[country] AS grouping_level_1,
analyzed_table.[state] AS grouping_level_2,
CAST(SYSDATETIMEOFFSET() AS date) AS time_period,
CAST((CAST(SYSDATETIMEOFFSET() AS date)) AS DATETIME) AS time_period_utc
FROM
[your_sql_server_database].[<target_schema>].[<target_table>] AS analyzed_table
GROUP BY analyzed_table.[country], analyzed_table.[state], analyzed_table.[target_column]
) AS top_col_values
) AS top_values
WHERE top_values_rank <=
GROUP BY time_period, time_period_utc, top_values.grouping_level_1, top_values.grouping_level_2
monthly expected strings in top values count
Check description
Verifies that the top X most popular column values contain all values from a list of expected values. Stores the most recent row count for each month when the data quality check was evaluated.
Check name | Check type | Time scale | Sensor definition | Quality rule |
---|---|---|---|---|
monthly_expected_strings_in_top_values_count | recurring | monthly | expected_strings_in_top_values_count | max_missing |
Enable check (Shell)
To enable this check provide connection name and check name in check enable command
To run this check provide check name in check run command It is also possible to run this check on a specific connection. In order to do this, add the connection name to the below It is additionally feasible to run this check on a specific table. In order to do this, add the table name to the below It is furthermore viable to combine run this check on a specific column. In order to do this, add the column name to the below
dqo> check run -c=connection_name -t=table_name -col=column_name -ch=monthly_expected_strings_in_top_values_count
recurring_checks:
monthly:
strings:
monthly_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
# yaml-language-server: $schema=https://cloud.dqo.ai/dqo-yaml-schema/TableYaml-schema.json
apiVersion: dqo/v1
kind: table
spec:
timestamp_columns:
event_timestamp_column: col_event_timestamp
ingestion_timestamp_column: col_inserted_at
incremental_time_window:
daily_partitioning_recent_days: 7
monthly_partitioning_recent_months: 1
columns:
target_column:
recurring_checks:
monthly:
strings:
monthly_expected_strings_in_top_values_count:
parameters:
expected_values:
- USD
- GBP
- EUR
warning:
max_missing: 1
error:
max_missing: 1
fatal:
max_missing: 2
labels:
- This is the column that is analyzed for data quality issues
col_event_timestamp:
labels:
- optional column that stores the timestamp when the event/transaction happened
col_inserted_at:
labels:
- optional column that stores the timestamp when row was ingested
BigQuery
{% import '/dialects/bigquery.sql.jinja2' as lib with context -%}
{%- macro extract_in_list(values_list) -%}
{%- for i in values_list -%}
{%- if not loop.last -%}
{{lib.make_text_constant(i)}}{{", "}}
{%- else -%}
{{lib.make_text_constant(i)}}
{%- endif -%}
{%- endfor -%}
{%- endmacro -%}
{%- macro render_from_subquery() -%}
FROM
(
SELECT
top_col_values.top_value as top_value,
top_col_values.time_period as time_period,
top_col_values.time_period_utc as time_period_utc,
RANK() OVER(PARTITION BY top_col_values.time_period {{- render_data_grouping('top_col_values', indentation = ' ') }}
ORDER BY top_col_values.total_values) as top_values_rank {{- render_data_grouping('top_col_values', indentation = ' ') }}
FROM
(
SELECT
{{ lib.render_target_column('analyzed_table') }} AS top_value,
COUNT(*) AS total_values
{{- lib.render_data_grouping_projections('analyzed_table', indentation = ' ') }}
{{- lib.render_time_dimension_projection('analyzed_table', indentation = ' ') }}
FROM
{{ lib.render_target_table() }} AS analyzed_table
{{- lib.render_where_clause(indentation = ' ') }}
{{- lib.render_group_by(indentation = ' ') }}, top_value
{{- lib.render_order_by(indentation = ' ') }}, total_values
) AS top_col_values
) AS top_values
WHERE top_values_rank <= {{ parameters.top }}
{%- endmacro -%}
{%- macro render_data_grouping(table_alias_prefix = '', indentation = '') -%}
{%- if lib.data_groupings is not none and (lib.data_groupings | length()) > 0 -%}
{%- for attribute in lib.data_groupings -%}
{{ ',' }}
{%- with data_grouping_level = lib.data_groupings[attribute] -%}
{%- if data_grouping_level.source == 'tag' -%}
{{ indentation }}{{ lib.make_text_constant(data_grouping_level.tag) }}
{%- elif data_grouping_level.source == 'column_value' -%}
{{ indentation }}{{ table_alias_prefix }}.grouping_{{ attribute }}
{%- endif -%}
{%- endwith %}
{%- endfor -%}
{%- endif -%}
{%- endmacro -%}
SELECT
{%- if 'expected_values' not in parameters or parameters.expected_values|length == 0 %}
NULL AS actual_value,
MAX(0) AS expected_value
{{- lib.render_data_grouping_projections('analyzed_table') }}
{{- lib.render_time_dimension_projection('analyzed_table') }}
FROM {{ lib.render_target_table() }} AS analyzed_table
{%- else %}
COUNT(DISTINCT
CASE
WHEN top_values.top_value IN ({{ extract_in_list(parameters.expected_values) }}) THEN top_values.top_value
ELSE NULL
END
) AS actual_value,
MAX({{ parameters.expected_values | length }}) AS expected_value,
top_values.time_period,
top_values.time_period_utc
{{- render_data_grouping('top_values', indentation = lib.eol() ~ ' ') }}
{{ render_from_subquery() }}
{%- endif -%}
{{- lib.render_group_by() -}}
{{- lib.render_order_by() -}}